期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks 被引量:9
1
作者 江沸菠 戴前伟 董莉 《Applied Geophysics》 SCIE CSCD 2016年第2期267-278,417,共13页
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian ne... Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion. 展开更多
关键词 Electrical resistivity imaging Bayesian neural network REGULARIZATION nonlinear inversion K-medoids clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部