Introducing the 1S^1 chromosome of Aegilops longissima into wheat genome can significantly improve wheat grain quality and contents of iron and zinc. Therefore, the development of molecular markers specific to 1S^1 ch...Introducing the 1S^1 chromosome of Aegilops longissima into wheat genome can significantly improve wheat grain quality and contents of iron and zinc. Therefore, the development of molecular markers specific to 1S^1 chromosome of A. longissima is of important significance for breeding high-quality wheat with high contents of iron and zinc in grains. In this study, nine molecular markers specific to 1S^1 chromosome of A. longissima were developed, including two 1S^1S specific markers,six 1S^1L specific markers and one 1S^1 specific marker which was located on both short and long arms. The practicability of these molecular markers were verified using hybrid population as materials. The results showed that hybrid population could be effectively screened and identified, which indicated that the developed 1S^1 chromosome-specific molecular markers could be used for screening and identification of hybrid population and could be used in marker-assisted breeding of high-quality wheat with high contents of Fe and Zn in grains.展开更多
基金Supported by National Natural Science Foundation of China(31201203)Earmarked Fund for Modern Agro-industry Technology Research System(CARS-03-1-8)+3 种基金China Postdoctoral Science Foundation(2013T60850)Program for Youth Talent of Shandong Academy of Agricultural Sciences(1-18-024)Seed Industry Foundation Grant to Taishan ScholarAgricultural Improved Variety Industrialization Project of Shandong Province(2-B-08)~~
文摘Introducing the 1S^1 chromosome of Aegilops longissima into wheat genome can significantly improve wheat grain quality and contents of iron and zinc. Therefore, the development of molecular markers specific to 1S^1 chromosome of A. longissima is of important significance for breeding high-quality wheat with high contents of iron and zinc in grains. In this study, nine molecular markers specific to 1S^1 chromosome of A. longissima were developed, including two 1S^1S specific markers,six 1S^1L specific markers and one 1S^1 specific marker which was located on both short and long arms. The practicability of these molecular markers were verified using hybrid population as materials. The results showed that hybrid population could be effectively screened and identified, which indicated that the developed 1S^1 chromosome-specific molecular markers could be used for screening and identification of hybrid population and could be used in marker-assisted breeding of high-quality wheat with high contents of Fe and Zn in grains.