期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CSSD和SVM脑电分类技术的研究
1
作者
程善光
赵伟鹏
《中国西部科技》
2013年第2期7-8,共2页
本文研究的BCI实验是基于BCI2003竞赛数据来对脑电信号分类。本文提出了一种脑电信号趋势的概念,使用支持向量机(SVM)作为分类器的算法。首先将BCI2003竞赛数据通过中值滤波器和由小波函数构成的带通滤波器,然后用时间窗进行时域上地过...
本文研究的BCI实验是基于BCI2003竞赛数据来对脑电信号分类。本文提出了一种脑电信号趋势的概念,使用支持向量机(SVM)作为分类器的算法。首先将BCI2003竞赛数据通过中值滤波器和由小波函数构成的带通滤波器,然后用时间窗进行时域上地过滤,选取对于大脑思维活动现象表现最明显的一段数据,再通过共空域子空间分解(CSSD)从脑电信号中提取特征,最后基于提取的特征,通过SVM训练后,进行分类识别,分类识别率达到了85%~96%。实验中采用的特征提取方法和分类方法对于脑电信号的分类识别准确率提高了不少。
展开更多
关键词
共空域子空间分解
支持向量机
脑机接口
脑电信号趋势
下载PDF
职称材料
题名
基于CSSD和SVM脑电分类技术的研究
1
作者
程善光
赵伟鹏
机构
潍坊
医学院
附属
医院
医疗
设备
科
出处
《中国西部科技》
2013年第2期7-8,共2页
文摘
本文研究的BCI实验是基于BCI2003竞赛数据来对脑电信号分类。本文提出了一种脑电信号趋势的概念,使用支持向量机(SVM)作为分类器的算法。首先将BCI2003竞赛数据通过中值滤波器和由小波函数构成的带通滤波器,然后用时间窗进行时域上地过滤,选取对于大脑思维活动现象表现最明显的一段数据,再通过共空域子空间分解(CSSD)从脑电信号中提取特征,最后基于提取的特征,通过SVM训练后,进行分类识别,分类识别率达到了85%~96%。实验中采用的特征提取方法和分类方法对于脑电信号的分类识别准确率提高了不少。
关键词
共空域子空间分解
支持向量机
脑机接口
脑电信号趋势
Keywords
Common spatial subspace decomposition
Support vector machine
Brain-computer interface
EEG trend
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CSSD和SVM脑电分类技术的研究
程善光
赵伟鹏
《中国西部科技》
2013
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部