在随机处理─对照的临床试验中,经常出现不依从或部分依从的现象,此时,由于所涉及到的"虚拟事实"变量,即不能观察到的潜在变量太多而不易估计其平均因果效应ACE.在仅出现完全依从和不依从情况时,Balke and Pearl利用线性规划...在随机处理─对照的临床试验中,经常出现不依从或部分依从的现象,此时,由于所涉及到的"虚拟事实"变量,即不能观察到的潜在变量太多而不易估计其平均因果效应ACE.在仅出现完全依从和不依从情况时,Balke and Pearl利用线性规划的方法获得了ACE估计量的上下界,利用他们所提供的方法,有时会出现下界为负数,显然,这样的下界没什么实际意义.根据Angrist,Imbebns&Rubin讨论工具变量时所提出一些假设条件,导出了在不同情况下,计算ACE估计量的上下界的方法,并证明了其下界一定是非负的,所得到的上下界区间比Balke and Pearl的区间要小.同时,还讨论了部分依从情况下,ACE估计量的上下界的计算方法,并得到了相应的结果.展开更多
在随机处理——对照的临床试验中,除出现完全依从和完全不依从的现象外,还会出现部分依从的现象,即患者只服用部分药品。在仅出现完全依从和不依从情况时,Balke and Pearl利用线性规划的方法获得了ACE估计量的上下界,对于部分依从的情况...在随机处理——对照的临床试验中,除出现完全依从和完全不依从的现象外,还会出现部分依从的现象,即患者只服用部分药品。在仅出现完全依从和不依从情况时,Balke and Pearl利用线性规划的方法获得了ACE估计量的上下界,对于部分依从的情况,是将这些数据全部并入完全依从的数据,这样处理的合理性没有论述。同时,利用他们所提供的方法,有时会出现下界为负数,显然,这样的下界没什么实际意义。本文根据Angrist,Imbebns&Rubin讨论工具变量时所提出一些假设条件,导出了在部分依从情况下,计算ACE估计量的上下界的方法,并证明了其下界一定是非负的。展开更多
文摘在随机处理─对照的临床试验中,经常出现不依从或部分依从的现象,此时,由于所涉及到的"虚拟事实"变量,即不能观察到的潜在变量太多而不易估计其平均因果效应ACE.在仅出现完全依从和不依从情况时,Balke and Pearl利用线性规划的方法获得了ACE估计量的上下界,利用他们所提供的方法,有时会出现下界为负数,显然,这样的下界没什么实际意义.根据Angrist,Imbebns&Rubin讨论工具变量时所提出一些假设条件,导出了在不同情况下,计算ACE估计量的上下界的方法,并证明了其下界一定是非负的,所得到的上下界区间比Balke and Pearl的区间要小.同时,还讨论了部分依从情况下,ACE估计量的上下界的计算方法,并得到了相应的结果.
文摘在随机处理——对照的临床试验中,除出现完全依从和完全不依从的现象外,还会出现部分依从的现象,即患者只服用部分药品。在仅出现完全依从和不依从情况时,Balke and Pearl利用线性规划的方法获得了ACE估计量的上下界,对于部分依从的情况,是将这些数据全部并入完全依从的数据,这样处理的合理性没有论述。同时,利用他们所提供的方法,有时会出现下界为负数,显然,这样的下界没什么实际意义。本文根据Angrist,Imbebns&Rubin讨论工具变量时所提出一些假设条件,导出了在部分依从情况下,计算ACE估计量的上下界的方法,并证明了其下界一定是非负的。