期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
人工智能深度学习对前列腺多序列MR图像分类的可行性研究
被引量:
11
1
作者
方俊华
Li Qiubai
+4 位作者
余成新
王兴刚
方志华
刘涛
王良
《中华放射学杂志》
CAS
CSCD
北大核心
2019年第10期839-843,共5页
目的开发一种能够自动分辨前列腺多序列MR图像的人工智能(AI)工具。方法回顾性分析2017年5月至2018年12月华中科技大学同济医学院附属同济医院前列腺多序列MR图像。前列腺多序列MR图像的分类由ResNet18卷积神经网络(CNN)模型来实现。运...
目的开发一种能够自动分辨前列腺多序列MR图像的人工智能(AI)工具。方法回顾性分析2017年5月至2018年12月华中科技大学同济医学院附属同济医院前列腺多序列MR图像。前列腺多序列MR图像的分类由ResNet18卷积神经网络(CNN)模型来实现。运用深度残差网络提升训练精度和测试精度。所使用的数据集包括19 146张7个前列腺MR序列图像(横断面T1WI、横断面T2WI、冠状面T2WI、矢状面T2WI、横断面DWI、横断面ADC、横断面PWI),选取其中2 800张图像作为训练集,选取剩余图像中的388张图像作为测试集。采用准确度评价ResNet18 CNN模型的效能。结果7个前列腺MR序列(横断面DWI、冠状面T2WI、横断面灌注成像、矢状面T2WI、横断面ADC、横断面T1WI和横断面T2WI)图像测试准确率分别为100.0%(44/44)、77.5%(31/40)、96.7%(116/120)、100.0%(44/44)、100.0%(44/44)、100.0%(52/52)和100.0%(44/44)。横断面PWI的分类0.8%(1/120)被错误地分到了横断面T2WI序列,仅2.5%(3/120)错误地分到矢状面T2WI序列;对于冠状面T2WI的分类15.0%(6/40)被错误地分到了横断面T2WI序列,7.5%(3/40)错误地分到矢状面T2WI序列。结论开发的能够自动分辨前列腺多序列MR图像的AI工具准确率高。
展开更多
关键词
人工智能
深度学习
前列腺
磁共振成像
图像分类
原文传递
题名
人工智能深度学习对前列腺多序列MR图像分类的可行性研究
被引量:
11
1
作者
方俊华
Li Qiubai
余成新
王兴刚
方志华
刘涛
王良
机构
华中
科
技大学同济医学院附属同济
医院
放射科
Department of Radiology
湖北省
宜昌
市
中心人民
医院
放射科
江西
省
景德镇
市
浮梁县人民(
中医
)
医院
放射
影像
科
湖北省
枝江市
中医医院
放射科
工作
出处
《中华放射学杂志》
CAS
CSCD
北大核心
2019年第10期839-843,共5页
基金
国家自然科学基金(81171307,81671656).
文摘
目的开发一种能够自动分辨前列腺多序列MR图像的人工智能(AI)工具。方法回顾性分析2017年5月至2018年12月华中科技大学同济医学院附属同济医院前列腺多序列MR图像。前列腺多序列MR图像的分类由ResNet18卷积神经网络(CNN)模型来实现。运用深度残差网络提升训练精度和测试精度。所使用的数据集包括19 146张7个前列腺MR序列图像(横断面T1WI、横断面T2WI、冠状面T2WI、矢状面T2WI、横断面DWI、横断面ADC、横断面PWI),选取其中2 800张图像作为训练集,选取剩余图像中的388张图像作为测试集。采用准确度评价ResNet18 CNN模型的效能。结果7个前列腺MR序列(横断面DWI、冠状面T2WI、横断面灌注成像、矢状面T2WI、横断面ADC、横断面T1WI和横断面T2WI)图像测试准确率分别为100.0%(44/44)、77.5%(31/40)、96.7%(116/120)、100.0%(44/44)、100.0%(44/44)、100.0%(52/52)和100.0%(44/44)。横断面PWI的分类0.8%(1/120)被错误地分到了横断面T2WI序列,仅2.5%(3/120)错误地分到矢状面T2WI序列;对于冠状面T2WI的分类15.0%(6/40)被错误地分到了横断面T2WI序列,7.5%(3/40)错误地分到矢状面T2WI序列。结论开发的能够自动分辨前列腺多序列MR图像的AI工具准确率高。
关键词
人工智能
深度学习
前列腺
磁共振成像
图像分类
Keywords
Artificial intelligence
Deep learning
Prostate
Magnetic resonance imaging
Image classification
分类号
R737.25 [医药卫生—肿瘤]
R445.2 [医药卫生—临床医学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
人工智能深度学习对前列腺多序列MR图像分类的可行性研究
方俊华
Li Qiubai
余成新
王兴刚
方志华
刘涛
王良
《中华放射学杂志》
CAS
CSCD
北大核心
2019
11
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部