The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter...The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter to 2.0 mm, a heterogeneous microstructure with in-situ formed a-Fe dendrite sparsely distributed in the amorphous matrix can be attained. This heterogeneous mierostructure is conceived to be highly responsible for the enhanced global plasticity in this marginal Fe-based BMG.展开更多
基金Foundation item: Project (SWU110046) supported by the Startup Foundation for Doctors of Southwest University, ChinaProjects (XDJK2012C017,CDJXS11132228, CDJZR10130012) supported by the Fundamental Research Funds for the Central Universities, China+1 种基金Project (CSTS2006AA4012) supported by the Chongqing Science and Technology Commission, ChinaProject (T201112) supported by Shenzhen Key Laboratory of Special Functional Materials,Shenzhen University,China
文摘The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter to 2.0 mm, a heterogeneous microstructure with in-situ formed a-Fe dendrite sparsely distributed in the amorphous matrix can be attained. This heterogeneous mierostructure is conceived to be highly responsible for the enhanced global plasticity in this marginal Fe-based BMG.