期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于高斯核函数的差分隐私技术联合聚类算法在医疗数据安全中的应用
1
作者
曹自雄
陈宇鲜
蒋秀梅
《中国医疗设备》
2024年第7期28-35,共8页
目的针对数据隐私泄露的风险,提出一种基于高斯核函数的差分隐私技术联合聚类算法。通过对医疗数据的处理和保护,旨在提供一种保证医疗数据隐私安全的解决方案。方法通过介绍医疗数据在机器学习过程中隐私暴露的问题以及差分隐私技术原...
目的针对数据隐私泄露的风险,提出一种基于高斯核函数的差分隐私技术联合聚类算法。通过对医疗数据的处理和保护,旨在提供一种保证医疗数据隐私安全的解决方案。方法通过介绍医疗数据在机器学习过程中隐私暴露的问题以及差分隐私技术原理、差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm,DPFCM)和基于高斯核函数的差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm Based on Gaussian Kernel Function,DPFCM_GF)的构建过程,采用最大距离法确定初始中心点,使用聚类中心点的高斯值来计算隐私预算分配比率,使用拉普拉斯噪声完成差分隐私保护。通过收集整理心脏病、乳腺癌、甲状腺疾病、糖尿病的公开数据对各算法进行验证。结果DPFCM_GF和DPFCM对不同数据集的聚类效果随隐私预算的增加逐渐改善。DPFCM_GF限值隐私预算分别为1.31、0.85、0.66、1.75,相对DPFCM减少了41.78%、50.29%、53.52%、38.38%,具有较快的收敛迭代速度,增幅差异具有统计学意义(P<0.05)。结论在医疗数据分析中,DPFCM_GF在一定程度上能够保护医疗数据的隐私,同时可提供具有较高准确性的聚类结果,具有潜在的应用前景和市场价值。
展开更多
关键词
高斯核函数
差分隐私技术
聚类算法
模糊C均值聚类算法
隐私预算
下载PDF
职称材料
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用
2
作者
曹自雄
陈宇鲜
蒋秀梅
《中国医学装备》
2024年第8期106-112,共7页
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最...
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最大距离法确定初始中心点,使用聚类中心点的高斯值计算隐私预算分配比率,并添加拉普拉斯噪声以完成差分隐私保护,构建DPFCM_GF。收集整理美国加州大学欧文分校机器学习存储库的心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集对DPFCM_GF有效性进行验证,收集2019年1月1日至2022年12月31日淮安市第二人民医院收治的756例胃癌和肺癌患者病例数据集,对DPFCM_GF的可用性进行验证,并将分析结果与模糊C均值聚类算法(FCM)以及差分隐私模糊C均值聚类算法(DPFCM)进行对比分析。结果:对于心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集,DPFCM_GF和DPFCM的最优聚类效果与FCM聚类效果相当;相较于DPFCM,DPFCM_GF迭代时间更快,聚集速度显著,差异有统计学意义(t=4.01、4.71、4.01、12.38,P<0.05)。对于肺癌和胃癌数据集,随着隐私预算ε的增大,DPFCM_GF正确识别率逐渐聚集于91.9%和93.9%,受试者工作特征(ROC)曲线下面积(AUC)值分别为0.79和0.81;当隐私函数ε为0.1、0.5、1和2(ε<3)时,DPFCM_GF聚类效果显著优于DPFCM,且聚类效果更佳,差异有统计学意义(χ^(2)=12.25、87.12、68.58、7.76,P<0.05;χ^(2)=4.74、43.51、42.47、4.89,P<0.05)。结论:DPFCM_GF是一种有效保护医疗数据隐私的方法,同时也可进行数据分析和挖掘任务,具有一定的研究意义和研究前景。
展开更多
关键词
数据隐私
差分隐私
模糊C均值聚类算法
高斯核函数
数据挖掘
隐私预算
下载PDF
职称材料
题名
基于高斯核函数的差分隐私技术联合聚类算法在医疗数据安全中的应用
1
作者
曹自雄
陈宇鲜
蒋秀梅
机构
淮安市
第二
人民
医院
信息统计中心
淮安市
第五
人民
医院
档案室
出处
《中国医疗设备》
2024年第7期28-35,共8页
文摘
目的针对数据隐私泄露的风险,提出一种基于高斯核函数的差分隐私技术联合聚类算法。通过对医疗数据的处理和保护,旨在提供一种保证医疗数据隐私安全的解决方案。方法通过介绍医疗数据在机器学习过程中隐私暴露的问题以及差分隐私技术原理、差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm,DPFCM)和基于高斯核函数的差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm Based on Gaussian Kernel Function,DPFCM_GF)的构建过程,采用最大距离法确定初始中心点,使用聚类中心点的高斯值来计算隐私预算分配比率,使用拉普拉斯噪声完成差分隐私保护。通过收集整理心脏病、乳腺癌、甲状腺疾病、糖尿病的公开数据对各算法进行验证。结果DPFCM_GF和DPFCM对不同数据集的聚类效果随隐私预算的增加逐渐改善。DPFCM_GF限值隐私预算分别为1.31、0.85、0.66、1.75,相对DPFCM减少了41.78%、50.29%、53.52%、38.38%,具有较快的收敛迭代速度,增幅差异具有统计学意义(P<0.05)。结论在医疗数据分析中,DPFCM_GF在一定程度上能够保护医疗数据的隐私,同时可提供具有较高准确性的聚类结果,具有潜在的应用前景和市场价值。
关键词
高斯核函数
差分隐私技术
聚类算法
模糊C均值聚类算法
隐私预算
Keywords
Gaussian kernel function
differential privacy technology
algorithm
fuzzy C-means algorithm
privacy budget
分类号
R197.3 [医药卫生—卫生事业管理]
TP312 [医药卫生—公共卫生与预防医学]
下载PDF
职称材料
题名
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用
2
作者
曹自雄
陈宇鲜
蒋秀梅
机构
淮安市
第二
人民
医院
信息统计中心
扬州大学附属
淮安
医院
(
淮安市
第五
人民
医院
)
档案室
出处
《中国医学装备》
2024年第8期106-112,共7页
文摘
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最大距离法确定初始中心点,使用聚类中心点的高斯值计算隐私预算分配比率,并添加拉普拉斯噪声以完成差分隐私保护,构建DPFCM_GF。收集整理美国加州大学欧文分校机器学习存储库的心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集对DPFCM_GF有效性进行验证,收集2019年1月1日至2022年12月31日淮安市第二人民医院收治的756例胃癌和肺癌患者病例数据集,对DPFCM_GF的可用性进行验证,并将分析结果与模糊C均值聚类算法(FCM)以及差分隐私模糊C均值聚类算法(DPFCM)进行对比分析。结果:对于心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集,DPFCM_GF和DPFCM的最优聚类效果与FCM聚类效果相当;相较于DPFCM,DPFCM_GF迭代时间更快,聚集速度显著,差异有统计学意义(t=4.01、4.71、4.01、12.38,P<0.05)。对于肺癌和胃癌数据集,随着隐私预算ε的增大,DPFCM_GF正确识别率逐渐聚集于91.9%和93.9%,受试者工作特征(ROC)曲线下面积(AUC)值分别为0.79和0.81;当隐私函数ε为0.1、0.5、1和2(ε<3)时,DPFCM_GF聚类效果显著优于DPFCM,且聚类效果更佳,差异有统计学意义(χ^(2)=12.25、87.12、68.58、7.76,P<0.05;χ^(2)=4.74、43.51、42.47、4.89,P<0.05)。结论:DPFCM_GF是一种有效保护医疗数据隐私的方法,同时也可进行数据分析和挖掘任务,具有一定的研究意义和研究前景。
关键词
数据隐私
差分隐私
模糊C均值聚类算法
高斯核函数
数据挖掘
隐私预算
Keywords
Data privacy
Differential privacy
Fuzzy C-means clustering algorithm
Gaussian kernel function
Data mining
Privacy budget
分类号
R197.324 [医药卫生—卫生事业管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于高斯核函数的差分隐私技术联合聚类算法在医疗数据安全中的应用
曹自雄
陈宇鲜
蒋秀梅
《中国医疗设备》
2024
0
下载PDF
职称材料
2
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用
曹自雄
陈宇鲜
蒋秀梅
《中国医学装备》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部