强对流天气短时临近预报系统(Severe Weather Automatic Nowcasting,SWAN)是面向短时临近监测、分析、预报、预警制作等功能为一体的业务平台。SWAN2.0基于MICAPS4(Meteorological Information Comprehensive Analysis and Processing S...强对流天气短时临近预报系统(Severe Weather Automatic Nowcasting,SWAN)是面向短时临近监测、分析、预报、预警制作等功能为一体的业务平台。SWAN2.0基于MICAPS4(Meteorological Information Comprehensive Analysis and Processing System Version 4.0,人机交互气象信息处理和天气预报制作系统)二次开发框架,采用C/S架构,服务器部署在省级,负责收集数据,运算SWAN产品;客户端部署在气象台站,实现具体的预报业务,并形成算法二次开发接口。SWAN2.0新增了三维变分风场反演、基于分雨团技术的雷达降水估测、冰雹识别等方法,实现了算法管理、产品生成、分析处理、资料检索显示、实时监控报警、预警产品制作等功能。SWAN2.0业务系统已在全国试用,在强对流天气监测、分析和短时临近预报预警中发挥了重要作用。展开更多
将支持向量机(SVM)回归方法应用于在登陆热带气旋影响下,每天00、06、12、18 UTC 4时次2分钟平均的站点风速预报。从2002-2007年热带气旋本身强度、站点地形情况和站点附近高低空环境场要素,设计相关因子,建立了4种预报模式,其中模式4...将支持向量机(SVM)回归方法应用于在登陆热带气旋影响下,每天00、06、12、18 UTC 4时次2分钟平均的站点风速预报。从2002-2007年热带气旋本身强度、站点地形情况和站点附近高低空环境场要素,设计相关因子,建立了4种预报模式,其中模式4的风速拟合误差的标准差为1.591 m·s^(-1)。用2008年8个登录热带气旋做独立样本检验,预报风速与实际风速的平均绝对值误差为1.750 m·s^(-1),标准差为2.367 m·s^(-1)。结果表明,在适当的样本截取和预报因子选取后,SVM方法建模的风速预报48小时内效果较好。展开更多
文摘强对流天气短时临近预报系统(Severe Weather Automatic Nowcasting,SWAN)是面向短时临近监测、分析、预报、预警制作等功能为一体的业务平台。SWAN2.0基于MICAPS4(Meteorological Information Comprehensive Analysis and Processing System Version 4.0,人机交互气象信息处理和天气预报制作系统)二次开发框架,采用C/S架构,服务器部署在省级,负责收集数据,运算SWAN产品;客户端部署在气象台站,实现具体的预报业务,并形成算法二次开发接口。SWAN2.0新增了三维变分风场反演、基于分雨团技术的雷达降水估测、冰雹识别等方法,实现了算法管理、产品生成、分析处理、资料检索显示、实时监控报警、预警产品制作等功能。SWAN2.0业务系统已在全国试用,在强对流天气监测、分析和短时临近预报预警中发挥了重要作用。