针对规模化电池储能参与电力系统二次调频问题,提出了考虑储能荷电状态(state of charge,SOC)的分层协调控制策略。在区域控制中心层,给出了考虑二次调频需求和储能SOC水平的二次调频功率分配策略,使储能SOC尽可能地维持在正常工作区间...针对规模化电池储能参与电力系统二次调频问题,提出了考虑储能荷电状态(state of charge,SOC)的分层协调控制策略。在区域控制中心层,给出了考虑二次调频需求和储能SOC水平的二次调频功率分配策略,使储能SOC尽可能地维持在正常工作区间,以确保储能持续参与二次调频的能力;在储能站层,采用分布式协同控制算法实现了二次调频功率指令跟踪,并保证各组储能单元SOC趋于一致以提升储能系统的综合运行性能。最后,通过两区域互联电力系统仿真,验证了所提出的规模化储能参与二次调频控制策略的有效性。展开更多
文摘针对规模化电池储能参与电力系统二次调频问题,提出了考虑储能荷电状态(state of charge,SOC)的分层协调控制策略。在区域控制中心层,给出了考虑二次调频需求和储能SOC水平的二次调频功率分配策略,使储能SOC尽可能地维持在正常工作区间,以确保储能持续参与二次调频的能力;在储能站层,采用分布式协同控制算法实现了二次调频功率指令跟踪,并保证各组储能单元SOC趋于一致以提升储能系统的综合运行性能。最后,通过两区域互联电力系统仿真,验证了所提出的规模化储能参与二次调频控制策略的有效性。