期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的产品意象识别
被引量:
23
1
作者
朱斌
杨程
+1 位作者
俞春阳
安芳
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2018年第9期1778-1784,共7页
为了满足用户对产品的情感化需求,提出一种基于深度学习的产品意象识别方法.该方法通过语义差异法获得产品意象数据集,在此基础上,使用卷积神经网络VGGNet进行训练,建立产品意象深度模型.以典型的椅子产品为例对文中方法进行验证,训练...
为了满足用户对产品的情感化需求,提出一种基于深度学习的产品意象识别方法.该方法通过语义差异法获得产品意象数据集,在此基础上,使用卷积神经网络VGGNet进行训练,建立产品意象深度模型.以典型的椅子产品为例对文中方法进行验证,训练好的产品意象深度模型识别准确率最高可达95.3%.为了进一步证明该方法的优越性,将其分别与以支持向量机(SVM)为代表的传统方法和浅层的卷积神经网络Caffe Net进行对比实验,结果表明,在识别准确率上该方法比SVM提高了约5%,比Caffe Net提升了4%~10%.此外,为了解释深度学习的识别过程,对卷积特征进行了可视化,展现了特征映射从底层到高层的抽象过程.
展开更多
关键词
产品意象
深度学习
自学习特征
VGGNet
卷积操作
下载PDF
职称材料
题名
基于深度学习的产品意象识别
被引量:
23
1
作者
朱斌
杨程
俞春阳
安芳
机构
浙江大学
城市
学院
工业
设计
系
浙江大学
计算机科学
与
技术
学院
现代
工业
设计所
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2018年第9期1778-1784,共7页
基金
浙江省自然科学基金(LY18E050014)
国家自然科学基金(61672451)
文摘
为了满足用户对产品的情感化需求,提出一种基于深度学习的产品意象识别方法.该方法通过语义差异法获得产品意象数据集,在此基础上,使用卷积神经网络VGGNet进行训练,建立产品意象深度模型.以典型的椅子产品为例对文中方法进行验证,训练好的产品意象深度模型识别准确率最高可达95.3%.为了进一步证明该方法的优越性,将其分别与以支持向量机(SVM)为代表的传统方法和浅层的卷积神经网络Caffe Net进行对比实验,结果表明,在识别准确率上该方法比SVM提高了约5%,比Caffe Net提升了4%~10%.此外,为了解释深度学习的识别过程,对卷积特征进行了可视化,展现了特征映射从底层到高层的抽象过程.
关键词
产品意象
深度学习
自学习特征
VGGNet
卷积操作
Keywords
product image
deep learning
self-learning feature
VGGNet
convolution operation
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的产品意象识别
朱斌
杨程
俞春阳
安芳
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2018
23
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部