针对传统遥感图像数据分析算法存在鲁棒性较差、适应度与计算效率均偏低的问题,文中基于YOLOv3提出了一种轻量化的遥感图像数据分析算法。该算法使用YOLOv3作为神经网络模型的框架,并将内部的Darknet-53多尺度卷积作为主网络。为了减小...针对传统遥感图像数据分析算法存在鲁棒性较差、适应度与计算效率均偏低的问题,文中基于YOLOv3提出了一种轻量化的遥感图像数据分析算法。该算法使用YOLOv3作为神经网络模型的框架,并将内部的Darknet-53多尺度卷积作为主网络。为了减小主网的冗余度,通过SE-Net模型连接网络的深层与浅层卷积,在轻量化的同时也增强了模型的深度特征提取能力。同时,根据改进后网络的权重输出结果,采用剪枝算法对卷积核进行简化,进而完成了模型的轻量化。在实验测试中,轻量化后的模型可显著提升FPS(Frames Per Second)值,且算法的mAP指标为93.25%,在对比算法中为最优,表明了算法模型的有效性及其性能的优越性。展开更多
文摘针对传统遥感图像数据分析算法存在鲁棒性较差、适应度与计算效率均偏低的问题,文中基于YOLOv3提出了一种轻量化的遥感图像数据分析算法。该算法使用YOLOv3作为神经网络模型的框架,并将内部的Darknet-53多尺度卷积作为主网络。为了减小主网的冗余度,通过SE-Net模型连接网络的深层与浅层卷积,在轻量化的同时也增强了模型的深度特征提取能力。同时,根据改进后网络的权重输出结果,采用剪枝算法对卷积核进行简化,进而完成了模型的轻量化。在实验测试中,轻量化后的模型可显著提升FPS(Frames Per Second)值,且算法的mAP指标为93.25%,在对比算法中为最优,表明了算法模型的有效性及其性能的优越性。