使用机器视觉对果实检测并进行估产是实现果园智能化管理的重要途径,针对自然环境下青皮核桃与叶片颜色差异小、核桃体积较小导致青皮核桃不易检出的问题,该研究提出一种基于改进YOLOv3的青皮核桃视觉检测方法。依据数据集特征进行数据...使用机器视觉对果实检测并进行估产是实现果园智能化管理的重要途径,针对自然环境下青皮核桃与叶片颜色差异小、核桃体积较小导致青皮核桃不易检出的问题,该研究提出一种基于改进YOLOv3的青皮核桃视觉检测方法。依据数据集特征进行数据增强,引入Mixup数据增强方法,使模型从更深的维度学习核桃特征;针对核桃单种类目标检测比较不同预训练模型,选择精度提升更明显的Microsoft Common Objects in Context(COCO)数据集预训练模型;依据标注框尺寸统计对锚框进行调整,避免锚框集中,提升模型多尺度优势。在消融试验中,前期改进将平均精度均值提升至93.30%,在此基础上,引入Mobil Net-v3骨干网络替换YOLOv3算法中原始骨干网络,提升模型检测能力及轻量化。试验表明,基于改进YOLOv3的青皮核桃检测平均精度均值为94.52%,超越YOLOv3其他2个骨干网络和Faster RCNN-ResNet-50网络。改进模型大小为88.6 M,检测速度为31帧/s,检测速度是Faster RCNN-ResNet-50网络的3倍,可以满足青皮核桃实时准确检测需求。该方法可为核桃果园智能化管理中的估产、采收规划等提供技术支撑,也可为近背景颜色的小果实实时准确检测提供思路。展开更多
文摘使用机器视觉对果实检测并进行估产是实现果园智能化管理的重要途径,针对自然环境下青皮核桃与叶片颜色差异小、核桃体积较小导致青皮核桃不易检出的问题,该研究提出一种基于改进YOLOv3的青皮核桃视觉检测方法。依据数据集特征进行数据增强,引入Mixup数据增强方法,使模型从更深的维度学习核桃特征;针对核桃单种类目标检测比较不同预训练模型,选择精度提升更明显的Microsoft Common Objects in Context(COCO)数据集预训练模型;依据标注框尺寸统计对锚框进行调整,避免锚框集中,提升模型多尺度优势。在消融试验中,前期改进将平均精度均值提升至93.30%,在此基础上,引入Mobil Net-v3骨干网络替换YOLOv3算法中原始骨干网络,提升模型检测能力及轻量化。试验表明,基于改进YOLOv3的青皮核桃检测平均精度均值为94.52%,超越YOLOv3其他2个骨干网络和Faster RCNN-ResNet-50网络。改进模型大小为88.6 M,检测速度为31帧/s,检测速度是Faster RCNN-ResNet-50网络的3倍,可以满足青皮核桃实时准确检测需求。该方法可为核桃果园智能化管理中的估产、采收规划等提供技术支撑,也可为近背景颜色的小果实实时准确检测提供思路。