针对传统单端元提取方法不能描述端元变异、限制混合像元分解精度的缺点,提出一种基于像元纯净指数的多端元提取算法(Multiple Endmember Extraction Algorithm Based on Pixel Purity Index,PPI-MEE)。首先将图像划分为不重叠的图像块...针对传统单端元提取方法不能描述端元变异、限制混合像元分解精度的缺点,提出一种基于像元纯净指数的多端元提取算法(Multiple Endmember Extraction Algorithm Based on Pixel Purity Index,PPI-MEE)。首先将图像划分为不重叠的图像块,并分别利用改进的PPI算法提取候选端元集,然后利用候选端元的邻域像元光谱信息对候选端元进行优化和精选。最后,对优化精选后的端元集分类得到每类地物的多端元光谱集。仿真数据和真实高光谱数据的实验结果表明,提出的多端元提取策略具有表征遥感图像中端元光谱变异的能力,能够提高端元提取精度和混合像元分解精度。展开更多
像元纯净指数(pixel purity index, PPI)算法是最为常用的端元提取算法之一,但算法中投影向量的随机性导致多次运行的端元提取结果不一致。为此,提出一种基于数据约减和中心化的像元纯净指数端元提取方法(pixel purity index endmember ...像元纯净指数(pixel purity index, PPI)算法是最为常用的端元提取算法之一,但算法中投影向量的随机性导致多次运行的端元提取结果不一致。为此,提出一种基于数据约减和中心化的像元纯净指数端元提取方法(pixel purity index endmember extraction algorithm based on data reduction and centralization, DRC-PPI)。首先利用自动目标生成算法生成候选端元,并进行无约束最小二乘解混,将解混丰度为负的像元从原始数据中移除得到约减数据。其次,对约减数据进行数据中心化进而获得投影向量,将约减数据投影到这些向量上,然后根据样本点的像元纯净指数选择端元光谱。仿真数据和真实高光谱数据实验结果表明,DRC-PPI算法克服了PPI端元提取结果不一致性,大大减少了投影计算量,其端元提取精度总体上高于PPI算法。展开更多
文摘针对传统单端元提取方法不能描述端元变异、限制混合像元分解精度的缺点,提出一种基于像元纯净指数的多端元提取算法(Multiple Endmember Extraction Algorithm Based on Pixel Purity Index,PPI-MEE)。首先将图像划分为不重叠的图像块,并分别利用改进的PPI算法提取候选端元集,然后利用候选端元的邻域像元光谱信息对候选端元进行优化和精选。最后,对优化精选后的端元集分类得到每类地物的多端元光谱集。仿真数据和真实高光谱数据的实验结果表明,提出的多端元提取策略具有表征遥感图像中端元光谱变异的能力,能够提高端元提取精度和混合像元分解精度。
文摘像元纯净指数(pixel purity index, PPI)算法是最为常用的端元提取算法之一,但算法中投影向量的随机性导致多次运行的端元提取结果不一致。为此,提出一种基于数据约减和中心化的像元纯净指数端元提取方法(pixel purity index endmember extraction algorithm based on data reduction and centralization, DRC-PPI)。首先利用自动目标生成算法生成候选端元,并进行无约束最小二乘解混,将解混丰度为负的像元从原始数据中移除得到约减数据。其次,对约减数据进行数据中心化进而获得投影向量,将约减数据投影到这些向量上,然后根据样本点的像元纯净指数选择端元光谱。仿真数据和真实高光谱数据实验结果表明,DRC-PPI算法克服了PPI端元提取结果不一致性,大大减少了投影计算量,其端元提取精度总体上高于PPI算法。