期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Stacking模型集成的LSTM网络短期负荷预测研究 被引量:15
1
作者 丁斌 邢志坤 +3 位作者 王帆 袁博 刘涌 孙岩 《中国测试》 CAS 北大核心 2020年第7期40-45,共6页
为解决传统负荷预测方法存在的预测精度偏低的问题,通过分析短期负荷影响因素确定训练集,创建Stacking模型,并结合包括输入门、输出门与遗忘门在内的LSTM网络创建Stacking-LSTM混合模型,通过时间滑动窗口建立影响因素数据特征图,将其作... 为解决传统负荷预测方法存在的预测精度偏低的问题,通过分析短期负荷影响因素确定训练集,创建Stacking模型,并结合包括输入门、输出门与遗忘门在内的LSTM网络创建Stacking-LSTM混合模型,通过时间滑动窗口建立影响因素数据特征图,将其作为Stacking-LSTM混合模型的输入,经数据转换后得到特征类别更强的降维二级特征数据,输入到LSTM网络层实现短期负荷预测。该方法利用Stacking模型的集成作用和LSTM网络的强挖掘能力,增强降维后的数据类别特征,达到提升电力系统负荷动态平衡性的效果。仿真结果表明,该方法的负荷预测结果与实际值非常接近,具有较高的预测精准度。 展开更多
关键词 Stacking模型 长短期记忆网络 短期负荷预测 混合模型 特征图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部