硒(Se)因其较高的体积比容量(3253 mAh cm^(-3))和电子电导率(1×10^(-5)S m^(-1))而成为新一代锂硒(Li-Se)电池储能材料。针对其反应过程中体积膨胀较大、容量衰减较快以及活性物质利用率低等问题,本研究通过在碳布(CC)上生长二维Z...硒(Se)因其较高的体积比容量(3253 mAh cm^(-3))和电子电导率(1×10^(-5)S m^(-1))而成为新一代锂硒(Li-Se)电池储能材料。针对其反应过程中体积膨胀较大、容量衰减较快以及活性物质利用率低等问题,本研究通过在碳布(CC)上生长二维Zn基金属有机框架(ZIF-L)并碳化,设计了一种ZIF-L衍生氮掺杂碳纳米片/硒自支撑复合材料(Se@NC/CC)用于锂硒电池研究。ZIF-L碳化形成的氮掺杂碳纳米片中丰富的微孔结构有效缓解了反应过程中的体积膨胀,掺杂N原子有利于吸附反应过程中的Li2Se,减少活性物质损失。特别地,Se@NC/CC电极中Se和C之间存在强的化学键作用,在一定程度上也可以减少活性物质损失,提高整体性能稳定性。电化学测试表明,在0.5C(1.0C=675 mAh g^(-1))电流密度下,Se@NC/CC电极的初始放电比容量为574 mAh g^(-1),展现出高初始放电比容量;电流密度为2.0C时,初始放电比容量为453.3 mAh g^(-1),循环500圈后仍然具有406.2 mAh g^(-1)的容量;同时也表现出了良好的倍率性能,与文献报道相比有较明显的优势。本研究设计的柔性自支撑硒电极为先进碱金属-硒电池的硒宿主材料设计提供了新的研究思路。展开更多
文摘硒(Se)因其较高的体积比容量(3253 mAh cm^(-3))和电子电导率(1×10^(-5)S m^(-1))而成为新一代锂硒(Li-Se)电池储能材料。针对其反应过程中体积膨胀较大、容量衰减较快以及活性物质利用率低等问题,本研究通过在碳布(CC)上生长二维Zn基金属有机框架(ZIF-L)并碳化,设计了一种ZIF-L衍生氮掺杂碳纳米片/硒自支撑复合材料(Se@NC/CC)用于锂硒电池研究。ZIF-L碳化形成的氮掺杂碳纳米片中丰富的微孔结构有效缓解了反应过程中的体积膨胀,掺杂N原子有利于吸附反应过程中的Li2Se,减少活性物质损失。特别地,Se@NC/CC电极中Se和C之间存在强的化学键作用,在一定程度上也可以减少活性物质损失,提高整体性能稳定性。电化学测试表明,在0.5C(1.0C=675 mAh g^(-1))电流密度下,Se@NC/CC电极的初始放电比容量为574 mAh g^(-1),展现出高初始放电比容量;电流密度为2.0C时,初始放电比容量为453.3 mAh g^(-1),循环500圈后仍然具有406.2 mAh g^(-1)的容量;同时也表现出了良好的倍率性能,与文献报道相比有较明显的优势。本研究设计的柔性自支撑硒电极为先进碱金属-硒电池的硒宿主材料设计提供了新的研究思路。
基金National Natural Science Foundation of China(51872219)Fundamental Research Funds for the Central Universities(WUT:2020IVA097)Funds for Postdoctoral Innovative Research Posts in Hubei Province(20201jb010)。