图像去噪是数字图像处理过程中的一个重要步骤,它将直接影响到图像处理的最终质量。针对传统的全变分(TV)正则化去噪算法容易产生阶梯效应的缺点,利用双边滤波去噪算法在空间域和值域两个方面进行滤波的特点,提出一种结合TV模型的双边...图像去噪是数字图像处理过程中的一个重要步骤,它将直接影响到图像处理的最终质量。针对传统的全变分(TV)正则化去噪算法容易产生阶梯效应的缺点,利用双边滤波去噪算法在空间域和值域两个方面进行滤波的特点,提出一种结合TV模型的双边滤波方法,该方法能在一定程度上有效地改善阶梯效应。仿真实验结果表明,提出的去噪方法不仅能够获得较好的去噪效果,还能有效地保持图像的边缘特征信息,降噪效果明显。在较高水平噪声情况下,与TV算法相比,该方法针对小尺寸灰度图片(256×256)图像的峰值信噪比(PSNR)提高1.45 d B左右,大尺寸灰度图片(512×512)图像的PSNR提高2.56 d B左右。展开更多
文摘图像去噪是数字图像处理过程中的一个重要步骤,它将直接影响到图像处理的最终质量。针对传统的全变分(TV)正则化去噪算法容易产生阶梯效应的缺点,利用双边滤波去噪算法在空间域和值域两个方面进行滤波的特点,提出一种结合TV模型的双边滤波方法,该方法能在一定程度上有效地改善阶梯效应。仿真实验结果表明,提出的去噪方法不仅能够获得较好的去噪效果,还能有效地保持图像的边缘特征信息,降噪效果明显。在较高水平噪声情况下,与TV算法相比,该方法针对小尺寸灰度图片(256×256)图像的峰值信噪比(PSNR)提高1.45 d B左右,大尺寸灰度图片(512×512)图像的PSNR提高2.56 d B左右。