正向最大匹配分词FMM(Forward Maximum Matching)算法存在设定的最大词长初始值固定不变的问题,带来长词丢失或匹配次数较多的弊端。针对此问题提出了根据中文分词词典中的词条长度动态确定截取待处理文本长度的思想,改进了FMM算法。与...正向最大匹配分词FMM(Forward Maximum Matching)算法存在设定的最大词长初始值固定不变的问题,带来长词丢失或匹配次数较多的弊端。针对此问题提出了根据中文分词词典中的词条长度动态确定截取待处理文本长度的思想,改进了FMM算法。与此相配合,设计了一种词典结构,使之能够有效地支持改进的算法。改进的算法与一般正向最大匹配算法相比大大减少了匹配次数,分析表明中文分词的速度和效率有了很大提高。展开更多
针对带钢表面缺陷在实际场景中检测精度低,易出现漏检和误检的情况,构建一种YOLOv5-CFD模型对带钢缺陷目标进行更精确的检测,该模型由CSPDarknet53、FcaNet与解耦检测头(Decoupled head)组成。首先,采用模糊C均值(FCM)算法对东北大学公...针对带钢表面缺陷在实际场景中检测精度低,易出现漏检和误检的情况,构建一种YOLOv5-CFD模型对带钢缺陷目标进行更精确的检测,该模型由CSPDarknet53、FcaNet与解耦检测头(Decoupled head)组成。首先,采用模糊C均值(FCM)算法对东北大学公开的NEU-DET热轧带钢表面缺陷检测数据集中的锚框进行聚类,优化先验框和真实框之间的匹配度;其次,为提取目标区域丰富的细节信息,在原始YOLOv5算法基础上添加频域通道注意力模块FcaNet;最后,采用解耦检测头将分类任务和回归任务分离。在NEU-DET数据集上的实验结果表明,改进的YOLOv5算法在引入较少参数量的情况下,检测精度提高了4.2个百分点,平均精度均值(mAP)达到85.5%,每秒传输帧数(Frames Per Second,FPS)达到27.71,与原YOLOv5相差不大,能够满足检测实时性的要求。展开更多
针对多模态情感分析中的模态内部特征表示和模态间的特征融合问题,结合注意力机制和多任务学习,提出了一种基于注意力的多层次混合融合的多任务多模态情感分析模型MAM(multi-level attention and multi-task)。首先,利用卷积神经网络和...针对多模态情感分析中的模态内部特征表示和模态间的特征融合问题,结合注意力机制和多任务学习,提出了一种基于注意力的多层次混合融合的多任务多模态情感分析模型MAM(multi-level attention and multi-task)。首先,利用卷积神经网络和双向门控循环单元来实现单模态内部特征的提取;其次,利用跨模态注意力机制实现模态间的两两特征融合;再次,在不同层次使用自注意力机制实现模态贡献度选择;最后,结合多任务学习获得情感和情绪的分类结果。在公开的CMU-MOSEI数据集上的实验结果表明,情感和情绪分类的准确率和F;值均有所提升。展开更多
不断增大的网络带宽给人们提供了丰富的网络应用和服务的同时,也给传统的数据俘获系统带来了挑战.本系统基于Intel数据平面开发套件(Data Plane Development Kit,DPDK)设计了高速网络数据包捕获软件.能够更好适应目前校园网高速网络数...不断增大的网络带宽给人们提供了丰富的网络应用和服务的同时,也给传统的数据俘获系统带来了挑战.本系统基于Intel数据平面开发套件(Data Plane Development Kit,DPDK)设计了高速网络数据包捕获软件.能够更好适应目前校园网高速网络数据包捕获的要求,为网络数据包分析提供技术支持.最后,本文对基于DPDK的数据包捕获系统和传统Libpcap进行了实验结果对比,表明基于DPDK的数据包捕获系统能够明显提升高速网络出口数据俘获的性能.展开更多
文摘正向最大匹配分词FMM(Forward Maximum Matching)算法存在设定的最大词长初始值固定不变的问题,带来长词丢失或匹配次数较多的弊端。针对此问题提出了根据中文分词词典中的词条长度动态确定截取待处理文本长度的思想,改进了FMM算法。与此相配合,设计了一种词典结构,使之能够有效地支持改进的算法。改进的算法与一般正向最大匹配算法相比大大减少了匹配次数,分析表明中文分词的速度和效率有了很大提高。
文摘针对带钢表面缺陷在实际场景中检测精度低,易出现漏检和误检的情况,构建一种YOLOv5-CFD模型对带钢缺陷目标进行更精确的检测,该模型由CSPDarknet53、FcaNet与解耦检测头(Decoupled head)组成。首先,采用模糊C均值(FCM)算法对东北大学公开的NEU-DET热轧带钢表面缺陷检测数据集中的锚框进行聚类,优化先验框和真实框之间的匹配度;其次,为提取目标区域丰富的细节信息,在原始YOLOv5算法基础上添加频域通道注意力模块FcaNet;最后,采用解耦检测头将分类任务和回归任务分离。在NEU-DET数据集上的实验结果表明,改进的YOLOv5算法在引入较少参数量的情况下,检测精度提高了4.2个百分点,平均精度均值(mAP)达到85.5%,每秒传输帧数(Frames Per Second,FPS)达到27.71,与原YOLOv5相差不大,能够满足检测实时性的要求。
文摘针对多模态情感分析中的模态内部特征表示和模态间的特征融合问题,结合注意力机制和多任务学习,提出了一种基于注意力的多层次混合融合的多任务多模态情感分析模型MAM(multi-level attention and multi-task)。首先,利用卷积神经网络和双向门控循环单元来实现单模态内部特征的提取;其次,利用跨模态注意力机制实现模态间的两两特征融合;再次,在不同层次使用自注意力机制实现模态贡献度选择;最后,结合多任务学习获得情感和情绪的分类结果。在公开的CMU-MOSEI数据集上的实验结果表明,情感和情绪分类的准确率和F;值均有所提升。
文摘不断增大的网络带宽给人们提供了丰富的网络应用和服务的同时,也给传统的数据俘获系统带来了挑战.本系统基于Intel数据平面开发套件(Data Plane Development Kit,DPDK)设计了高速网络数据包捕获软件.能够更好适应目前校园网高速网络数据包捕获的要求,为网络数据包分析提供技术支持.最后,本文对基于DPDK的数据包捕获系统和传统Libpcap进行了实验结果对比,表明基于DPDK的数据包捕获系统能够明显提升高速网络出口数据俘获的性能.