期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的图像识别研究
被引量:
26
1
作者
安强强
郑敏
《自动化与仪器仪表》
2018年第3期115-118,共4页
针对传统图像分类算法在泛化能力等方面存在的不足,结合当前的深度学习算法,提出一种基于卷积神经网络与SVM的图像识别方法。对此,文章首先以深度学习算法中比较典型的卷积神经网络进行介绍,并重点对原理和训练过程进行介绍;然后...
针对传统图像分类算法在泛化能力等方面存在的不足,结合当前的深度学习算法,提出一种基于卷积神经网络与SVM的图像识别方法。对此,文章首先以深度学习算法中比较典型的卷积神经网络进行介绍,并重点对原理和训练过程进行介绍;然后构建卷积神经网络结构和SVM分类器,最后以水果图像为例,通过MATLAB对上述模型进行编程仿真。结果表明本文提出的算法在识别的错误率方面都要明显优于单一的算法,进而验证了本文算法的可行性,为当前图像的识别提供了新的参考与借鉴。
展开更多
关键词
深度学习
监督算法
SVM支持向量机
分类器
仿真实验
原文传递
题名
基于深度学习的图像识别研究
被引量:
26
1
作者
安强强
郑敏
机构
愉
林学院
武警工程大学
出处
《自动化与仪器仪表》
2018年第3期115-118,共4页
基金
陕西省教育厅2017年专项科学研究计划(17JK0900)
文摘
针对传统图像分类算法在泛化能力等方面存在的不足,结合当前的深度学习算法,提出一种基于卷积神经网络与SVM的图像识别方法。对此,文章首先以深度学习算法中比较典型的卷积神经网络进行介绍,并重点对原理和训练过程进行介绍;然后构建卷积神经网络结构和SVM分类器,最后以水果图像为例,通过MATLAB对上述模型进行编程仿真。结果表明本文提出的算法在识别的错误率方面都要明显优于单一的算法,进而验证了本文算法的可行性,为当前图像的识别提供了新的参考与借鉴。
关键词
深度学习
监督算法
SVM支持向量机
分类器
仿真实验
Keywords
deep learning
supervised algorithm
SVM support vector machine
classifier
simulation experiment
分类号
TP28 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的图像识别研究
安强强
郑敏
《自动化与仪器仪表》
2018
26
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部