期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于机器学习的网络流量分类研究进展
被引量:
23
1
作者
王涛
余顺争
《小型微型计算机系统》
CSCD
北大核心
2012年第5期1034-1040,共7页
机器学习方法不依赖匹配协议端口或解析协议内容,而是利用网络流的各种统计特征识别网络应用,近年来得到了广泛关注和快速发展.本文总结了基于机器学习的网络流量分类方法自2004年来的研究进展,并且按有监督、无监督与半监督的区别进行...
机器学习方法不依赖匹配协议端口或解析协议内容,而是利用网络流的各种统计特征识别网络应用,近年来得到了广泛关注和快速发展.本文总结了基于机器学习的网络流量分类方法自2004年来的研究进展,并且按有监督、无监督与半监督的区别进行分类、分析与比较.重点讨论了基于机器学习的网络流量分类研究的挑战与方向,即解决样本标注瓶颈、样本分布不平衡与动态变化、实时与连续分类以及分类算法可扩展性等核心问题.
展开更多
关键词
机器学习
网络流
网络流量分类
统计特征
下载PDF
职称材料
题名
基于机器学习的网络流量分类研究进展
被引量:
23
1
作者
王涛
余顺争
机构
广东
工业
大学
网络
与
信息化
工程系
中山
大学
电子
与
通信
工程系
出处
《小型微型计算机系统》
CSCD
北大核心
2012年第5期1034-1040,共7页
基金
国家自然科学基金广东联合基金重点项目(U0735002)资助
国家自然学基金面上项目(60970146)资助
广东省重大科技专项(2009A080207008)资助
文摘
机器学习方法不依赖匹配协议端口或解析协议内容,而是利用网络流的各种统计特征识别网络应用,近年来得到了广泛关注和快速发展.本文总结了基于机器学习的网络流量分类方法自2004年来的研究进展,并且按有监督、无监督与半监督的区别进行分类、分析与比较.重点讨论了基于机器学习的网络流量分类研究的挑战与方向,即解决样本标注瓶颈、样本分布不平衡与动态变化、实时与连续分类以及分类算法可扩展性等核心问题.
关键词
机器学习
网络流
网络流量分类
统计特征
Keywords
machine learning
network flow
network traffic classification
statistical characteristics
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于机器学习的网络流量分类研究进展
王涛
余顺争
《小型微型计算机系统》
CSCD
北大核心
2012
23
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部