为了分析像素级社会经济活动的空间分布状况,以Landsat8和NPP-VIIRS夜间灯光影像为数据源,分别对北京市第一产业和第二、三产业GDP进行空间化操作。利用分类回归树(classification and regression tree,CART)算法,通过Landsat8影像生成...为了分析像素级社会经济活动的空间分布状况,以Landsat8和NPP-VIIRS夜间灯光影像为数据源,分别对北京市第一产业和第二、三产业GDP进行空间化操作。利用分类回归树(classification and regression tree,CART)算法,通过Landsat8影像生成北京市的土地利用图,在分析第一产业GDP与土地利用类型面积相关性的基础上,构建了第一产业GDP与耕地面积的线性回归模型。建立了5种灯光指标与第二、三产业GDP的数学关系,通过相关性和回归分析确定第二、三产业GDP与综合灯光指数呈明显的幂函数关系。根据以上2种模型分别生成对应2类产业的像素级GDP密度图,再分别对其进行线性纠正并求和后制作出北京市500 m格网尺寸的GDP密度图。误差分析发现,第一产业GDP、第二、三产业GDP和GDP总量与实际统计值的平均相对误差分别为0.86%,0.61%和1.37%。结果表明,结合土地利用数据的NPP-VIIRS夜间灯光GDP空间化方法可以精确估算北京市GDP产值,反映北京市经济空间分布特征。展开更多
文摘为了分析像素级社会经济活动的空间分布状况,以Landsat8和NPP-VIIRS夜间灯光影像为数据源,分别对北京市第一产业和第二、三产业GDP进行空间化操作。利用分类回归树(classification and regression tree,CART)算法,通过Landsat8影像生成北京市的土地利用图,在分析第一产业GDP与土地利用类型面积相关性的基础上,构建了第一产业GDP与耕地面积的线性回归模型。建立了5种灯光指标与第二、三产业GDP的数学关系,通过相关性和回归分析确定第二、三产业GDP与综合灯光指数呈明显的幂函数关系。根据以上2种模型分别生成对应2类产业的像素级GDP密度图,再分别对其进行线性纠正并求和后制作出北京市500 m格网尺寸的GDP密度图。误差分析发现,第一产业GDP、第二、三产业GDP和GDP总量与实际统计值的平均相对误差分别为0.86%,0.61%和1.37%。结果表明,结合土地利用数据的NPP-VIIRS夜间灯光GDP空间化方法可以精确估算北京市GDP产值,反映北京市经济空间分布特征。