期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于核主成分分析的地震属性优化方法及应用
被引量:
41
1
作者
印兴耀
孔国英
张广智
《石油地球物理勘探》
EI
CSCD
北大核心
2008年第2期179-183,124-125+246,共8页
传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以...
传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以提取出数据之间的非线性关系。本文从方法原理概述入手,分析了一般主成分分析在处理非线性问题上存在的不足,阐述了基于核函数的主成分分析方法,并将其首次应用于地震属性的降维优化中。应用结果表明:基于核函数的主成分分析方法具有优秀的特征提取性能。
展开更多
关键词
属性降维优化
主成分分析(PCA)
核函数
核主成分分析(KPCA)
下载PDF
职称材料
题名
基于核主成分分析的地震属性优化方法及应用
被引量:
41
1
作者
印兴耀
孔国英
张广智
机构
山东省
东营市
中国
石油大学
地球
资源
与
信息学
院
地球物理
系
中国
石油大学
(华东)
地球
资源
与
信息学
院
地球物理
系
出处
《石油地球物理勘探》
EI
CSCD
北大核心
2008年第2期179-183,124-125+246,共8页
文摘
传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以提取出数据之间的非线性关系。本文从方法原理概述入手,分析了一般主成分分析在处理非线性问题上存在的不足,阐述了基于核函数的主成分分析方法,并将其首次应用于地震属性的降维优化中。应用结果表明:基于核函数的主成分分析方法具有优秀的特征提取性能。
关键词
属性降维优化
主成分分析(PCA)
核函数
核主成分分析(KPCA)
Keywords
attribute dimension-reducing optimization
principle component analysis(PCA)
kernel function
kernel principle component analysis(KPCA)
分类号
P631.4 [天文地球—地质矿产勘探]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于核主成分分析的地震属性优化方法及应用
印兴耀
孔国英
张广智
《石油地球物理勘探》
EI
CSCD
北大核心
2008
41
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部