近年来,由于视频监控在各地安防的广泛应用,行人的精细化识别显得尤为重要,其中行人的衣着颜色是最显著的外观特征,其识别的正确性直接影响视频检索中对特定行人的检索.论文提出了一个简单实用的行人衣着识别系统,可以有效地识别行人衣...近年来,由于视频监控在各地安防的广泛应用,行人的精细化识别显得尤为重要,其中行人的衣着颜色是最显著的外观特征,其识别的正确性直接影响视频检索中对特定行人的检索.论文提出了一个简单实用的行人衣着识别系统,可以有效地识别行人衣着颜色.首先,结合HOG(histogram of oriented gradient)算法和Grabcut算法自动地对监控图像中的行人进行精确分割;然后,在利用外观划分模型精确地分割出行人的上身和下身后对上下身分别分割成若干个小块;最后,使用KNN(k-nearest neighbor)分类方法判断每个块的颜色,通过所有块的颜色标签投票决定衣着颜色.最终,使用收集的监控视频图像数据集验证此方法的有效性和实用性.展开更多
为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对...为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。展开更多
文摘近年来,由于视频监控在各地安防的广泛应用,行人的精细化识别显得尤为重要,其中行人的衣着颜色是最显著的外观特征,其识别的正确性直接影响视频检索中对特定行人的检索.论文提出了一个简单实用的行人衣着识别系统,可以有效地识别行人衣着颜色.首先,结合HOG(histogram of oriented gradient)算法和Grabcut算法自动地对监控图像中的行人进行精确分割;然后,在利用外观划分模型精确地分割出行人的上身和下身后对上下身分别分割成若干个小块;最后,使用KNN(k-nearest neighbor)分类方法判断每个块的颜色,通过所有块的颜色标签投票决定衣着颜色.最终,使用收集的监控视频图像数据集验证此方法的有效性和实用性.
文摘为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。