提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Pr...提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Projection for Sparse Reconstruction,GPSR)求得测试样本的稀疏系数,最后根据稀疏系数的能量特征实现分类识别。利用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)实测SAR数据进行实验,实验结果表明该方法在方位角未知的情况下平均识别率达到96.78%,能够明显地提高目标的识别结果,是一种有效的SAR目标识别方法。展开更多
针对光纤振动信号有噪声干扰、识别信号类型准确率不高且识别时间长的问题,提出了基于奇异值分解(singular value decomposition,SVD)和改进粒子群优化支持向量机(modified particle swarm optimization support vector machine,MPSO-S...针对光纤振动信号有噪声干扰、识别信号类型准确率不高且识别时间长的问题,提出了基于奇异值分解(singular value decomposition,SVD)和改进粒子群优化支持向量机(modified particle swarm optimization support vector machine,MPSO-SVM)的识别方法。首先,采用SVD对信号去噪,根据奇异值序列二阶差分谱单边极小值原则确定信号重构秩阶次。其次,提取振动信号特征,利用串行特征融合(serial feature fusion,SFF)方法组建特征向量组。最后,利用MPSO-SVM进行分类识别,提高识别精度和算法效率。采用实测信号进行验证,结果表明,信噪比有明显提升,信号平均识别率较粒子群优化支持向量机(particle swarm optimization support vector machine,PSO-SVM)提升5%。该方法较传统神经网络识别方法有较好的效果,具有实际应用价值。展开更多
文摘提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Projection for Sparse Reconstruction,GPSR)求得测试样本的稀疏系数,最后根据稀疏系数的能量特征实现分类识别。利用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)实测SAR数据进行实验,实验结果表明该方法在方位角未知的情况下平均识别率达到96.78%,能够明显地提高目标的识别结果,是一种有效的SAR目标识别方法。