期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向中医药大模型的知识增强方法研究
1
作者 吉祥宇 王鑫 +5 位作者 张鹤译 孟昭鹏 张俊华 庄朋伟 贾勇哲 徐大为 《计算机科学与探索》 CSCD 北大核心 2024年第10期2616-2629,共14页
近年来,大语言模型(LLM)在各个领域取得了许多重大成果。由于缺乏专业知识,以及中医和现代医学的思想不同,大模型在中医药领域的应用仍是一项挑战。现有的知识增强方法难以保持中医方剂具有的自身结构性。为了解决以上问题,提出了一种... 近年来,大语言模型(LLM)在各个领域取得了许多重大成果。由于缺乏专业知识,以及中医和现代医学的思想不同,大模型在中医药领域的应用仍是一项挑战。现有的知识增强方法难以保持中医方剂具有的自身结构性。为了解决以上问题,提出了一种新的知识增强方法。该方法由模型训练、图谱构建和知识增强三部分组成。在模型训练阶段,通过对基础大模型在中医药数据集上进行预训练和微调两阶段训练,得到中医药领域大模型。在图谱构建阶段,基于中医十万首经典方剂和古籍中的方剂,利用清洗后的数据集构建中医药图谱。在知识增强阶段,基于对知识图谱上信息的计算,利用检索图谱中的专业知识和图谱结构计算检索结果,中医药方剂中的结构特性得以保留。在中医药方剂配伍任务上,针对于任务特性提出了一组评价标准,包括主观指标和客观指标,用于评估模型在该任务上的表现。实验表明,该方法相对于基准测试模型,在主观指标和客观指标上均获得了较大提升,BLEU-1最高提升0.09,ROUGE-1最高提升0.21。消融实验表明,该方法对于模型在该任务上具有较大作用,未使用知识增强的模型BLEU-1相比于使用知识增强下降约37%。 展开更多
关键词 大语言模型(LLM) 中医药 方剂优化 检索增强生成
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部