期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多维小波聚类的空间文本数据情感分布分析
被引量:
1
1
作者
李柯
佐々木勇和
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2019年第7期14-22,共9页
【目的】构建基于多维小波聚类的空间文本数据情感分析模型,实现文本情感和空间位置的综合分析。【方法】将Yelp数据集进行整合以构建空间文本数据库,使用基于词典的情感分析方法构建特征向量。提出使用多维小波聚类的混合算法和文本–...
【目的】构建基于多维小波聚类的空间文本数据情感分析模型,实现文本情感和空间位置的综合分析。【方法】将Yelp数据集进行整合以构建空间文本数据库,使用基于词典的情感分析方法构建特征向量。提出使用多维小波聚类的混合算法和文本–空间算法两种模型并进行分析。【结果】实验结果验证了使用db2和bior2.2小波基函数的多维小波聚类算法比DBSCAN和K-means算法在空间文本数据挖掘中能识别出更精确的聚类集合,且在十万级至千万级数据聚类中速度最佳。【局限】情感分析部分使用一元语言模型,缺乏对语句层面意义的分析。【结论】本文所提文本–空间算法模型能有效挖掘多维空间文本数据的情感倾向分布;混合算法模型为空间文本数据推荐系统提供了同时计算空间接近性和情感相似性的有效方案。
展开更多
关键词
空间文本数据
情感分布分析
小波变换
聚类
原文传递
题名
基于多维小波聚类的空间文本数据情感分布分析
被引量:
1
1
作者
李柯
佐々木勇和
机构
南京
大学
信息管理
学院
大阪
大学
大学院
情报
科学研究
科
出处
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2019年第7期14-22,共9页
文摘
【目的】构建基于多维小波聚类的空间文本数据情感分析模型,实现文本情感和空间位置的综合分析。【方法】将Yelp数据集进行整合以构建空间文本数据库,使用基于词典的情感分析方法构建特征向量。提出使用多维小波聚类的混合算法和文本–空间算法两种模型并进行分析。【结果】实验结果验证了使用db2和bior2.2小波基函数的多维小波聚类算法比DBSCAN和K-means算法在空间文本数据挖掘中能识别出更精确的聚类集合,且在十万级至千万级数据聚类中速度最佳。【局限】情感分析部分使用一元语言模型,缺乏对语句层面意义的分析。【结论】本文所提文本–空间算法模型能有效挖掘多维空间文本数据的情感倾向分布;混合算法模型为空间文本数据推荐系统提供了同时计算空间接近性和情感相似性的有效方案。
关键词
空间文本数据
情感分布分析
小波变换
聚类
Keywords
Spatial-Textual Data
Sentiment Distribution Analysis
Wavelet Transform
Clustering
分类号
G35 [文化科学—情报学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于多维小波聚类的空间文本数据情感分布分析
李柯
佐々木勇和
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2019
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部