期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种用于构建用户画像的二级融合算法框架
被引量:
30
1
作者
李恒超
林鸿飞
+4 位作者
杨亮
徐博
魏晓聪
张绍武
古丽孜热.艾尼外
《计算机科学》
CSCD
北大核心
2018年第1期157-161,共5页
用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作是给用户贴"标签"。基于用户的查询词历史记录,提出一种用于预测用户多维标签的二级融合算法框架。在第一级...
用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作是给用户贴"标签"。基于用户的查询词历史记录,提出一种用于预测用户多维标签的二级融合算法框架。在第一级模型中,分别在各个标签预测子任务上建立多种模型,使用传统机器学习方法与Trigram特征相结合来抽取用户用词习惯的差异,使用doc2vec浅层神经网络模型来抽取查询词的语义关联信息,使用卷积神经网络模型来抽取查询词之间的深层语义关联信息。实验表明,doc2vec在处理用户查询这样的短文本相关任务时有着相对较好的预测准确性。在第二级模型中,针对用户画像这样的多标签预测任务,使用XGBTree模型及Stacking多模型相融合的方法提取出用户各标签属性之间的关联信息,使得平均预测准确率进一步提高了2%左右。在2016年中国计算机学会(CCF)组织的大数据竞赛《大数据精准营销中搜狗用户画像挖掘》中,所提二级融合算法框架在894支队伍中夺得了冠军。
展开更多
关键词
用户画像
标签预测
短文本分类
多模型融合
下载PDF
职称材料
题名
一种用于构建用户画像的二级融合算法框架
被引量:
30
1
作者
李恒超
林鸿飞
杨亮
徐博
魏晓聪
张绍武
古丽孜热.艾尼外
机构
大连理工大学
计算机科学
与
技术
学院
信息检索
实验室
伊犁师范
学院
电子
与
信息
工
程
学院
出处
《计算机科学》
CSCD
北大核心
2018年第1期157-161,共5页
基金
国家自然科学基金(61632011
61572102
+1 种基金
61562080
61602079)资助
文摘
用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作是给用户贴"标签"。基于用户的查询词历史记录,提出一种用于预测用户多维标签的二级融合算法框架。在第一级模型中,分别在各个标签预测子任务上建立多种模型,使用传统机器学习方法与Trigram特征相结合来抽取用户用词习惯的差异,使用doc2vec浅层神经网络模型来抽取查询词的语义关联信息,使用卷积神经网络模型来抽取查询词之间的深层语义关联信息。实验表明,doc2vec在处理用户查询这样的短文本相关任务时有着相对较好的预测准确性。在第二级模型中,针对用户画像这样的多标签预测任务,使用XGBTree模型及Stacking多模型相融合的方法提取出用户各标签属性之间的关联信息,使得平均预测准确率进一步提高了2%左右。在2016年中国计算机学会(CCF)组织的大数据竞赛《大数据精准营销中搜狗用户画像挖掘》中,所提二级融合算法框架在894支队伍中夺得了冠军。
关键词
用户画像
标签预测
短文本分类
多模型融合
Keywords
User portraits
Tag prediction
Short text classification
Multi-model ensemble
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种用于构建用户画像的二级融合算法框架
李恒超
林鸿飞
杨亮
徐博
魏晓聪
张绍武
古丽孜热.艾尼外
《计算机科学》
CSCD
北大核心
2018
30
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部