因为对高性能微芯片和系统设计的广泛影响,能量消耗问题受到计算机界越来越广泛的关注.多个层次的技术被用于改善系统的能量效率,并行处理是体系结构层提高能量效率的主要手段.并行处理使用性能适中的计算节点减少能量消耗,使用多个节...因为对高性能微芯片和系统设计的广泛影响,能量消耗问题受到计算机界越来越广泛的关注.多个层次的技术被用于改善系统的能量效率,并行处理是体系结构层提高能量效率的主要手段.并行处理使用性能适中的计算节点减少能量消耗,使用多个节点并行执行维持高吞吐量.文中分析了并行处理提高能量效率的基本原理,给出了并行处理的时间开销和能量开销模型.基于模型分析,对低电压并行系统、动态电压调节(Dynamic Voltage Scaling,DVS)的并行系统和多核微处理器3个并行处理方向进行了展望,给出了这些并行处理方向改善能量效率的空间.展开更多
文摘因为对高性能微芯片和系统设计的广泛影响,能量消耗问题受到计算机界越来越广泛的关注.多个层次的技术被用于改善系统的能量效率,并行处理是体系结构层提高能量效率的主要手段.并行处理使用性能适中的计算节点减少能量消耗,使用多个节点并行执行维持高吞吐量.文中分析了并行处理提高能量效率的基本原理,给出了并行处理的时间开销和能量开销模型.基于模型分析,对低电压并行系统、动态电压调节(Dynamic Voltage Scaling,DVS)的并行系统和多核微处理器3个并行处理方向进行了展望,给出了这些并行处理方向改善能量效率的空间.