Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technol...Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technology. Recent development in Li-CO2 batteries is presented. The reaction mechanism with an air cathode, operating temperatures used, electrochemical performance under different CO2 concentrations, stability of the battery in different electrolytes, and utilization of different cathode materials were emphasized. At last, challenges and perspectives were also present- ed. This review provides a deep understanding of Li-CO2 batteries and offers important guidelines for developing reversible and high efficiency Li-CO2 batteries.展开更多
Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of eff...Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of efficient catalytic systems. Gold‐containing metal nanoparticles have exhibited excellent catalytic performance for hydrogen generation from liquid chemical hydrides. The present mini‐review focuses on recent developments in hydrogen generation from liquid chemical hydrides using gold‐nanoparticle and gold‐containing heterometallic nanoparticle catalysts.展开更多
We describe the reaction mechanism and active sites for CO oxidation over a Au/TiO2(110) model surface and Au single‐crystal surfaces, along with the role of H2O, on a molecular scale. At low tem‐perature (<3...We describe the reaction mechanism and active sites for CO oxidation over a Au/TiO2(110) model surface and Au single‐crystal surfaces, along with the role of H2O, on a molecular scale. At low tem‐perature (<320 K), H2O played an essential role in promoting CO oxidation, and the active site for CO oxidation was the perimeter of the interface between the gold nanoparticles and the TiO2 sup‐port (Auδ+–Oδ––Ti). We believe that the O–O bond was activated by the formation of OOH, which was produced directly from O2 and H2O at the perimeter of the interface between the gold nanoparticles and the TiO2 support, and consequently OOH reacted with CO to form CO2. This reaction mechanism explains the dependence of the CO2 formation rate on O2 pressure at 300 K. In contrast, at high temperature (>320 K), low‐coordinated gold atoms built up on the surface as a result of surface reconstruction due to exposure to CO. The low‐coordinated gold atoms adsorbed O2, which then dissociated and oxidized CO on the metallic gold surface.展开更多
There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact inter...There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact interfaces between AgOx regions and the surface of the bulk Au as active working sites, while the other holds that charge transfer from Ag to Au in a surface Au‐Ag alloy causes the catalytic activity. One key point in examining these theories and determining the origin of the synergy in‐volves determining whether or not Ag exists as an oxide or as a metallic alloy on the Au surface. To confirm that enhanced activity results from contact between Ag2O and Au nanoparticles (NPs), a comparative study of catalytic CO oxidation over Au/Ag2O and Ag2O was performed in the present work, using a closed recirculation reaction system. A reaction mixture consisting of a stoichiometric composition of CO and O2 (CO/O2=2/1) was supplied to both catalysts and the resulting pressure decrease rates were tracked, from which the amounts of gas consumed as well as the quantity of CO2 produced were determined. The steady state reactions of both Au/Ag2O and Ag2O did not lead to any meaningful difference in the rate of pressure decrease during the oxidation. The pressure decrease over both catalysts was attributed to the reduction of surface lattice O on Ag2O by CO. The results obtained for Au/Ag2O are in good agreement with previous data resulting from the use of Ag‐contaminated Au powder (Ag/Au‐b) having an oxidized surfaces. This finding suggests that the perimeters between AgOx zones and the bulk Au surface may not function as active sites during CO oxidation. A review of previous results obtained with Ag/Au‐b specimens having so‐called steady state surfaces indicates that AgOx species in such materials are reduced to the 0 state to form a Ag‐Au alloy that provides the active sites.展开更多
There is much different type of selective detectors for GC but emission spectroscopic detectors are few.We developed the radio frequency helium glow discharge plasma detector for capillary GC.It attached polychrometor...There is much different type of selective detectors for GC but emission spectroscopic detectors are few.We developed the radio frequency helium glow discharge plasma detector for capillary GC.It attached polychrometor to detect full spectrum simultaneously and achieved sensitive,selective detection ability for various compounds as a novel element selective detector.The application of this system will be reported.展开更多
基金supported by the National Basic Research Program of China(973 Program,2014CB932302,2014CB932303)the National Natural Science Foundation of China(21403107,21373111)+2 种基金Natural Science Foundation of Jiangsu Province of China(BK20140055)Specialized Research Fund for the Doctoral Program of Higher Education of China(20120091120022),PAPD of Jiangsu Higher Education Institutionsthe Project on Union of Industry-Study-Research of Jiangsu Province(BY2015069-01)
文摘Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technology. Recent development in Li-CO2 batteries is presented. The reaction mechanism with an air cathode, operating temperatures used, electrochemical performance under different CO2 concentrations, stability of the battery in different electrolytes, and utilization of different cathode materials were emphasized. At last, challenges and perspectives were also present- ed. This review provides a deep understanding of Li-CO2 batteries and offers important guidelines for developing reversible and high efficiency Li-CO2 batteries.
基金supported by Ministry of Economy, Trade and Industry (METI)National Institute of Advanced Industrial Science Technology (AIST) and Kobe University
文摘Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of efficient catalytic systems. Gold‐containing metal nanoparticles have exhibited excellent catalytic performance for hydrogen generation from liquid chemical hydrides. The present mini‐review focuses on recent developments in hydrogen generation from liquid chemical hydrides using gold‐nanoparticle and gold‐containing heterometallic nanoparticle catalysts.
文摘We describe the reaction mechanism and active sites for CO oxidation over a Au/TiO2(110) model surface and Au single‐crystal surfaces, along with the role of H2O, on a molecular scale. At low tem‐perature (<320 K), H2O played an essential role in promoting CO oxidation, and the active site for CO oxidation was the perimeter of the interface between the gold nanoparticles and the TiO2 sup‐port (Auδ+–Oδ––Ti). We believe that the O–O bond was activated by the formation of OOH, which was produced directly from O2 and H2O at the perimeter of the interface between the gold nanoparticles and the TiO2 support, and consequently OOH reacted with CO to form CO2. This reaction mechanism explains the dependence of the CO2 formation rate on O2 pressure at 300 K. In contrast, at high temperature (>320 K), low‐coordinated gold atoms built up on the surface as a result of surface reconstruction due to exposure to CO. The low‐coordinated gold atoms adsorbed O2, which then dissociated and oxidized CO on the metallic gold surface.
基金National Natural Science Foundation of China(51072136)Specialized Research Fund for the Doctoral Program of Higher Education(20090072120034)Scholarship Award for Excellent Doctorial Student Granted by Ministry of Education(0500219171)
基金supported by CREST project(Catalyst Design of Gold Clusters through Junction Effect with Metal oxides,Carbons,and Polymers)sponsored by Japan Science and Technology Agency(JST)~~
文摘There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact interfaces between AgOx regions and the surface of the bulk Au as active working sites, while the other holds that charge transfer from Ag to Au in a surface Au‐Ag alloy causes the catalytic activity. One key point in examining these theories and determining the origin of the synergy in‐volves determining whether or not Ag exists as an oxide or as a metallic alloy on the Au surface. To confirm that enhanced activity results from contact between Ag2O and Au nanoparticles (NPs), a comparative study of catalytic CO oxidation over Au/Ag2O and Ag2O was performed in the present work, using a closed recirculation reaction system. A reaction mixture consisting of a stoichiometric composition of CO and O2 (CO/O2=2/1) was supplied to both catalysts and the resulting pressure decrease rates were tracked, from which the amounts of gas consumed as well as the quantity of CO2 produced were determined. The steady state reactions of both Au/Ag2O and Ag2O did not lead to any meaningful difference in the rate of pressure decrease during the oxidation. The pressure decrease over both catalysts was attributed to the reduction of surface lattice O on Ag2O by CO. The results obtained for Au/Ag2O are in good agreement with previous data resulting from the use of Ag‐contaminated Au powder (Ag/Au‐b) having an oxidized surfaces. This finding suggests that the perimeters between AgOx zones and the bulk Au surface may not function as active sites during CO oxidation. A review of previous results obtained with Ag/Au‐b specimens having so‐called steady state surfaces indicates that AgOx species in such materials are reduced to the 0 state to form a Ag‐Au alloy that provides the active sites.
文摘There is much different type of selective detectors for GC but emission spectroscopic detectors are few.We developed the radio frequency helium glow discharge plasma detector for capillary GC.It attached polychrometor to detect full spectrum simultaneously and achieved sensitive,selective detection ability for various compounds as a novel element selective detector.The application of this system will be reported.