针对传统的定步长最小均方误差(fixed step size-least mean square,FSS-LMS)算法不能同时兼顾快速收敛和较小稳态误差,以及变步长最小均方误差(variable step size-least mean square,VSS-LMS)算法也不能满足较快的收敛速度和较好的抗...针对传统的定步长最小均方误差(fixed step size-least mean square,FSS-LMS)算法不能同时兼顾快速收敛和较小稳态误差,以及变步长最小均方误差(variable step size-least mean square,VSS-LMS)算法也不能满足较快的收敛速度和较好的抗噪声性能等问题,提出了一种在Sigmoid函数中引入递减的等比序列,在估计误差的自相关函数基础上,用前后时刻的绝对误差来代替当前时刻的瞬时误差,加强了对步长因子控制的算法。仿真结果表明,在不同的信噪比环境下,提出的算法较其他LMS算法具有收敛速度快、抗噪声性能强和稳态误差小等特点。同时,给出了卫星通信系统的仿真模型,并且将提出的算法应用到了该系统模型的自适应均衡器之中,系统的误码性能有较大的改善。展开更多
文摘针对传统的定步长最小均方误差(fixed step size-least mean square,FSS-LMS)算法不能同时兼顾快速收敛和较小稳态误差,以及变步长最小均方误差(variable step size-least mean square,VSS-LMS)算法也不能满足较快的收敛速度和较好的抗噪声性能等问题,提出了一种在Sigmoid函数中引入递减的等比序列,在估计误差的自相关函数基础上,用前后时刻的绝对误差来代替当前时刻的瞬时误差,加强了对步长因子控制的算法。仿真结果表明,在不同的信噪比环境下,提出的算法较其他LMS算法具有收敛速度快、抗噪声性能强和稳态误差小等特点。同时,给出了卫星通信系统的仿真模型,并且将提出的算法应用到了该系统模型的自适应均衡器之中,系统的误码性能有较大的改善。