【目的】探究不同种植模式和施氮水平下玉米大豆的叶片持绿、光合和系统产量特性。【方法】通过田间定位试验研究种植方式(玉米单作(MM)、大豆单作(SS)、玉米套作(IM)、大豆套作(IS))和施氮水平(不施氮(NN)、减量施氮(RN:180 kg N·...【目的】探究不同种植模式和施氮水平下玉米大豆的叶片持绿、光合和系统产量特性。【方法】通过田间定位试验研究种植方式(玉米单作(MM)、大豆单作(SS)、玉米套作(IM)、大豆套作(IS))和施氮水平(不施氮(NN)、减量施氮(RN:180 kg N·hm;)、常量施氮(CN:240 kg N·hm;))对玉米大豆叶片持绿、光合特性以及其干物质积累和系统产量的影响。【结果】玉米产量随施氮量增加而增加,大豆产量随施氮增加先增后降;RN下,IM的籽粒干物质积累量最大,玉米大豆套作系统的总产量最高,系统生产力指数(SPI)最大。套作下各作物的叶片持绿期更长,光合特性指标均较单作稳定,且在籽粒形成期优于单作;各施氮水平下,套作处理的绿叶百分比均显著高于单作,IM的最大绿叶衰减速率出现天数比MM的分别晚7 d、5 d和1 d;IS的则比SS的分别晚7 d、0 d和11 d。相比单作,套作可以显著降低各施氮水平下玉米叶片的平均衰减速率,延长最大衰减速率出现天数,降低绿叶衰减程度。各作物的光合速率表现为套作高于单作,减量施氮高于常量施氮。玉米R2期,IM的叶片光化学淬灭系数(Qp)比MM的高12.78%,非光化学淬灭系数(NPQ)则低21.30%;NPQ随施氮水平的增加而降低,RN比NN降低了17.11%。套作SPAD值波动幅度弱于单作,且呈稳定上升趋势;玉米R2期,IM比MM高34.52%,大豆R2和R6期,IS分别比SS高10.39%、29.48%;RN的SPAD值最高,玉米R2期,IMRN处理比IMNN处理高17.46%,MMRN处理比MMNN处理高35.02%;大豆R6期,ISRN处理比ISNN和ISCN处理分别高7.71%、6.67%,SSRN处理比SSCN处理高10.03%。【结论】减量施氮下,玉米大豆套作显著延长了叶片的持绿期;花后叶片的光合速率、PSⅡ光合机构功能、叶绿素都保持在较高的水平且比单作稳定,籽粒干物质积累增强,充分发挥了玉米的生产潜力并增加了大豆产量,使得套作系统总产量显著提高。展开更多
利用高光谱遥感技术监测作物水分状况和籽粒产量,对于调控作物生长、优化水分管理和改善产量形成具有重要意义。本研究玉米品种选用正红505,于2018—2019年在四川雅安和仁寿的试验田设置4个水分处理(正常水分、轻度、中度和重度干旱),...利用高光谱遥感技术监测作物水分状况和籽粒产量,对于调控作物生长、优化水分管理和改善产量形成具有重要意义。本研究玉米品种选用正红505,于2018—2019年在四川雅安和仁寿的试验田设置4个水分处理(正常水分、轻度、中度和重度干旱),分析玉米在拔节期(V6)、抽雄期(VT)和灌浆期(R^(2))的冠层含水量(canopy water content,CWC)与籽粒产量的定量关系,利用植被指数和连续小波变换对光谱反射率数据进行处理,采用线性回归方法构建CWC定量反演模型,进一步探索以CWC为桥梁建立的玉米籽粒产量的预测模型效果。结果表明,(1)利用小波特征构建的CWC估测模型的预测效果高于植被指数,V6、VT和R^(2)期分别以小波特征gaus3770,64、rbio3.31635,2和rbio3.3838,2构建的线性回归模型检验精度较高,R^(2)分别为0.770、0.291和0.233。(2)CWC与玉米籽粒产量间建立的线性回归模型均达极显著水平(P<0.01),V6、VT和R^(2)期的R^(2)分别为0.596、0.366和0.439。(3)基于光谱反射率构建的产量预测模型以V6期小波特征gaus3770,64的验证效果最好(R^(2)=0.577,RMSE=1.625 t hm^(–2)),可作为预测玉米籽粒产量的最佳时期。因此,本研究提出的“光谱反射率—冠层含水量—产量”建模方法能够实现对玉米籽粒产量的精确估测,为未来大面积监测玉米生产力提供了理论依据。展开更多
基于西南地区油菜收获后大豆-玉米带状间作种植存在的弱光环境、品种和密度筛选等问题,选择2个不同熟期的品种南夏豆25号(ND25,中晚熟,多分枝)、齐黄34(QH34,早熟,少分枝),分析播期(2021年,S1:5月17日,S2:5月27日,S3:6月6日;2022年,S1:5...基于西南地区油菜收获后大豆-玉米带状间作种植存在的弱光环境、品种和密度筛选等问题,选择2个不同熟期的品种南夏豆25号(ND25,中晚熟,多分枝)、齐黄34(QH34,早熟,少分枝),分析播期(2021年,S1:5月17日,S2:5月27日,S3:6月6日;2022年,S1:5月10日,S2:5月25日,S3:6月9日)及密度(D1:81,000株hm^(–2),D2:101,000株hm^(–2),D3:140,000株hm^(–2),D4:171,000株hm^(–2))对带状间作大豆茎叶生长及产量形成的影响。结果表明:同一密度,随着播期的推迟,2个品种始粒期的叶面积指数逐渐减小,冠层内部透光率逐渐增加,ND25对荚的分配比率逐渐增加,倒伏率逐渐降低,QH34对荚的分配比率逐渐减少,倒伏率逐渐增加;同一播期,随着密度的增加,2个品种始粒期的叶面积指数逐渐增加,透光率逐渐减小,对荚的干物质分配比率逐渐减少,倒伏率逐渐上升。光环境及干物质分配差异对不同品种的产量影响不同,ND25同一密度不同播期间,S3>S2>S1,同一播期不同密度间,D1>D2>D3>D4,ND25品种S3播期D1密度产量最优,为1752.89 kg hm^(–2);QH34同一密度不同播期间,S1>S2>S3,同一播期不同密度间,D3>D2>D1>D4,QH34品种S1播期D3密度产量最优,为1538.64 kg hm^(–2)。因此,中晚熟品种应适当晚播,早熟品种应适当早播,多分枝品种适度稀植,少分枝品种适度密植,各品种通过播期、密度协同可提高大豆产量。展开更多
文摘利用高光谱遥感技术监测作物水分状况和籽粒产量,对于调控作物生长、优化水分管理和改善产量形成具有重要意义。本研究玉米品种选用正红505,于2018—2019年在四川雅安和仁寿的试验田设置4个水分处理(正常水分、轻度、中度和重度干旱),分析玉米在拔节期(V6)、抽雄期(VT)和灌浆期(R^(2))的冠层含水量(canopy water content,CWC)与籽粒产量的定量关系,利用植被指数和连续小波变换对光谱反射率数据进行处理,采用线性回归方法构建CWC定量反演模型,进一步探索以CWC为桥梁建立的玉米籽粒产量的预测模型效果。结果表明,(1)利用小波特征构建的CWC估测模型的预测效果高于植被指数,V6、VT和R^(2)期分别以小波特征gaus3770,64、rbio3.31635,2和rbio3.3838,2构建的线性回归模型检验精度较高,R^(2)分别为0.770、0.291和0.233。(2)CWC与玉米籽粒产量间建立的线性回归模型均达极显著水平(P<0.01),V6、VT和R^(2)期的R^(2)分别为0.596、0.366和0.439。(3)基于光谱反射率构建的产量预测模型以V6期小波特征gaus3770,64的验证效果最好(R^(2)=0.577,RMSE=1.625 t hm^(–2)),可作为预测玉米籽粒产量的最佳时期。因此,本研究提出的“光谱反射率—冠层含水量—产量”建模方法能够实现对玉米籽粒产量的精确估测,为未来大面积监测玉米生产力提供了理论依据。
文摘基于西南地区油菜收获后大豆-玉米带状间作种植存在的弱光环境、品种和密度筛选等问题,选择2个不同熟期的品种南夏豆25号(ND25,中晚熟,多分枝)、齐黄34(QH34,早熟,少分枝),分析播期(2021年,S1:5月17日,S2:5月27日,S3:6月6日;2022年,S1:5月10日,S2:5月25日,S3:6月9日)及密度(D1:81,000株hm^(–2),D2:101,000株hm^(–2),D3:140,000株hm^(–2),D4:171,000株hm^(–2))对带状间作大豆茎叶生长及产量形成的影响。结果表明:同一密度,随着播期的推迟,2个品种始粒期的叶面积指数逐渐减小,冠层内部透光率逐渐增加,ND25对荚的分配比率逐渐增加,倒伏率逐渐降低,QH34对荚的分配比率逐渐减少,倒伏率逐渐增加;同一播期,随着密度的增加,2个品种始粒期的叶面积指数逐渐增加,透光率逐渐减小,对荚的干物质分配比率逐渐减少,倒伏率逐渐上升。光环境及干物质分配差异对不同品种的产量影响不同,ND25同一密度不同播期间,S3>S2>S1,同一播期不同密度间,D1>D2>D3>D4,ND25品种S3播期D1密度产量最优,为1752.89 kg hm^(–2);QH34同一密度不同播期间,S1>S2>S3,同一播期不同密度间,D3>D2>D1>D4,QH34品种S1播期D3密度产量最优,为1538.64 kg hm^(–2)。因此,中晚熟品种应适当晚播,早熟品种应适当早播,多分枝品种适度稀植,少分枝品种适度密植,各品种通过播期、密度协同可提高大豆产量。