为实现中波制冷红外导引头的低成本、无热化设计,采用两轴框架式总体布局方式,基于硅锗光学材料,利用一次成像3片式光学结构(Si-Ge-Si),选用斯特林制冷型面阵规模640×512像素尺寸为15μm的中波红外探测器作为接收器件,设计一种高...为实现中波制冷红外导引头的低成本、无热化设计,采用两轴框架式总体布局方式,基于硅锗光学材料,利用一次成像3片式光学结构(Si-Ge-Si),选用斯特林制冷型面阵规模640×512像素尺寸为15μm的中波红外探测器作为接收器件,设计一种高分辨率低成本中波制冷红外成像制导光学系统,并实现了宽温范围内的无热化设计。设计结果表明,光学系统焦距为55 mm,视场大小为10°×8°,在33 lp/mm处,轴上0视场的调制传递函数(Modulation Transfer Function,MTF)不低于0.6,轴外0.7视场传递函数不低于0.40,畸变小于1%,冷光阑效率100%。同时,结合整流罩进行针对性优化设计,系统冷反射现象基本消除,在-40℃~+70℃温度范围内具有良好的成像效果。光学系统结构简单,易加工装校,良品率高。经实测样机,光学系统成像质量优良,各项性能指标满足技术指标要求。展开更多
针对机动性能好、突防能力强的红外成像制导系统,利用极薄金属片可以快速加热升温与自然降温的特性,提出了一种适用于末制导阶段的新型红外干扰方法。建立了金属片加热升温及自然降温过程的数学模型,确定了金属片结构形式及材料特性;设...针对机动性能好、突防能力强的红外成像制导系统,利用极薄金属片可以快速加热升温与自然降温的特性,提出了一种适用于末制导阶段的新型红外干扰方法。建立了金属片加热升温及自然降温过程的数学模型,确定了金属片结构形式及材料特性;设计了结构简单、密封环境良好的红外点源干扰装置。试验结果表明:金属片优选2μm厚的镍片,其加热时间为50 ms (500~1 000℃),自然降温时间为75 ms (1 000~500℃),可以满足帧频要求(10 Hz);并实现了温度规律性的周期变化。分析与试验结果证实了红外点源干扰装置能够模拟红外辐射特性的快速变化,可为末制导阶段干扰提供一种新思路。展开更多
文摘为实现中波制冷红外导引头的低成本、无热化设计,采用两轴框架式总体布局方式,基于硅锗光学材料,利用一次成像3片式光学结构(Si-Ge-Si),选用斯特林制冷型面阵规模640×512像素尺寸为15μm的中波红外探测器作为接收器件,设计一种高分辨率低成本中波制冷红外成像制导光学系统,并实现了宽温范围内的无热化设计。设计结果表明,光学系统焦距为55 mm,视场大小为10°×8°,在33 lp/mm处,轴上0视场的调制传递函数(Modulation Transfer Function,MTF)不低于0.6,轴外0.7视场传递函数不低于0.40,畸变小于1%,冷光阑效率100%。同时,结合整流罩进行针对性优化设计,系统冷反射现象基本消除,在-40℃~+70℃温度范围内具有良好的成像效果。光学系统结构简单,易加工装校,良品率高。经实测样机,光学系统成像质量优良,各项性能指标满足技术指标要求。
文摘针对机动性能好、突防能力强的红外成像制导系统,利用极薄金属片可以快速加热升温与自然降温的特性,提出了一种适用于末制导阶段的新型红外干扰方法。建立了金属片加热升温及自然降温过程的数学模型,确定了金属片结构形式及材料特性;设计了结构简单、密封环境良好的红外点源干扰装置。试验结果表明:金属片优选2μm厚的镍片,其加热时间为50 ms (500~1 000℃),自然降温时间为75 ms (1 000~500℃),可以满足帧频要求(10 Hz);并实现了温度规律性的周期变化。分析与试验结果证实了红外点源干扰装置能够模拟红外辐射特性的快速变化,可为末制导阶段干扰提供一种新思路。