In order to investigate the dependence of microstructure and mechanical properties on the rolling process parameters, AZ31 magnesium alloy sheets with different grain sizes, basal texture intensities and twinning type...In order to investigate the dependence of microstructure and mechanical properties on the rolling process parameters, AZ31 magnesium alloy sheets with different grain sizes, basal texture intensities and twinning types were obtained using hot rolling at various temperatures and reductions. The volume fractions of the extension, contraction and secondary twins in the as-rolled sheets depend on the grain size. The highest volume fractions of three types of twins are obtained at 523 K under the reduction of 10% when the average grain size value is the maximum. The critical reductions for complete dynamic recrystallization are 30% at 523 K and 40% at 473 K. The increase of yield strength is ascribed to both grain-refinement strengthening and basal texture strengthening at the first stage. When the grain size does not decrease with increasing the reduction, the yield strength is mainly influenced by the texture weakening.展开更多
The hydrogen-induced microstructure evolution and phase transformations in Ti-6Al-4V alloy during heating and cooling were studied.The specimens were heated to 1273 K and subsequently cooled to room temperature.The hy...The hydrogen-induced microstructure evolution and phase transformations in Ti-6Al-4V alloy during heating and cooling were studied.The specimens were heated to 1273 K and subsequently cooled to room temperature.The hydrogen content is up to 0.8%(mass fraction).The hydrogen-induced dynamic phase transformations and the corresponding mechanisms were analyzed.When the hydrogen content increases,the β transus temperature significantly decreases and the magnitude decreases,and the volume fraction of β phase increases.During heating,the phase transformations in hydrogenated Ti-6Al-4V alloys can be divided into three stages,and the phase transformation order is δ→α+H2↑?δ+α′→βH?α′→αH+βH?αH→α+H2↑?α→β?βH→β+H2↑.In addition,the relationship among hydrogenation and Ms and Mf of α′ martensite were determined.展开更多
The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger s...The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger single pass rolling reduction led to weaker texture during the multi-pass hot rolling procedure. The sheet obtained showed weak basal texture, while the value was only 1/3-1/2 that of general as-rolled AZ31 Mg alloy sheets. It was beneficial for the enhancement of further cold rolling formability despite of the coarser grain size. The deformation mechanism for the formation of texture in AZ31 magnesium alloy sheet was also analyzed in detail.展开更多
文摘In order to investigate the dependence of microstructure and mechanical properties on the rolling process parameters, AZ31 magnesium alloy sheets with different grain sizes, basal texture intensities and twinning types were obtained using hot rolling at various temperatures and reductions. The volume fractions of the extension, contraction and secondary twins in the as-rolled sheets depend on the grain size. The highest volume fractions of three types of twins are obtained at 523 K under the reduction of 10% when the average grain size value is the maximum. The critical reductions for complete dynamic recrystallization are 30% at 523 K and 40% at 473 K. The increase of yield strength is ascribed to both grain-refinement strengthening and basal texture strengthening at the first stage. When the grain size does not decrease with increasing the reduction, the yield strength is mainly influenced by the texture weakening.
基金Project (2011CB012805) supported by the National Basic Research Program of ChinaProject (AWPT-M05) supported by the State Key Laboratory of Advanced Welding and Joining, China
基金Project(51275132)supported by the National Natural Science Foundation of China
文摘The hydrogen-induced microstructure evolution and phase transformations in Ti-6Al-4V alloy during heating and cooling were studied.The specimens were heated to 1273 K and subsequently cooled to room temperature.The hydrogen content is up to 0.8%(mass fraction).The hydrogen-induced dynamic phase transformations and the corresponding mechanisms were analyzed.When the hydrogen content increases,the β transus temperature significantly decreases and the magnitude decreases,and the volume fraction of β phase increases.During heating,the phase transformations in hydrogenated Ti-6Al-4V alloys can be divided into three stages,and the phase transformation order is δ→α+H2↑?δ+α′→βH?α′→αH+βH?αH→α+H2↑?α→β?βH→β+H2↑.In addition,the relationship among hydrogenation and Ms and Mf of α′ martensite were determined.
文摘The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger single pass rolling reduction led to weaker texture during the multi-pass hot rolling procedure. The sheet obtained showed weak basal texture, while the value was only 1/3-1/2 that of general as-rolled AZ31 Mg alloy sheets. It was beneficial for the enhancement of further cold rolling formability despite of the coarser grain size. The deformation mechanism for the formation of texture in AZ31 magnesium alloy sheet was also analyzed in detail.