为了丰富过硫化氢分子和过硫化氢一价阳离子的电子基态和激发态的信息,采用量子化学中密度泛函理论的B3LYP方法,使用6-311++g(3df,3pd)基组,对其进行了研究。计算得到了过硫化氢分子HSSH基态和过硫化氢离子HSSH+基态及激发态的平衡构型...为了丰富过硫化氢分子和过硫化氢一价阳离子的电子基态和激发态的信息,采用量子化学中密度泛函理论的B3LYP方法,使用6-311++g(3df,3pd)基组,对其进行了研究。计算得到了过硫化氢分子HSSH基态和过硫化氢离子HSSH+基态及激发态的平衡构型、光谱常数、总能量和零点振动能。计算表明:过硫化氢中性分子是长对称陀螺分子,二面角为90.66°,具有C_2对称性,而过硫化氢离子HSSH+有顺式(二面角为0°)和反式(二面角为180°)两种稳定的异构体,反式结构基态能量比顺式结构基态能量低0.129 e V;此外计算还得到了过硫化氢离子HSSH+两种异构体的基态和激发态的电子结构。展开更多
报导了1.0~3.0MeV的Xe^(30+)离子与1.0MeV的Xe^(26+)离子入射Au表面发射的X射线谱,考虑到探测器Be窗对射线的非均匀衰减,还原了1.0MeV的Xe^(30+)离子产生X射线谱。通过用经典过垒模型及两体碰撞模型的分析表明:动能1.0~3.0MeV的Xe^(30+...报导了1.0~3.0MeV的Xe^(30+)离子与1.0MeV的Xe^(26+)离子入射Au表面发射的X射线谱,考虑到探测器Be窗对射线的非均匀衰减,还原了1.0MeV的Xe^(30+)离子产生X射线谱。通过用经典过垒模型及两体碰撞模型的分析表明:动能1.0~3.0MeV的Xe^(30+)离子入射Au靶,下表面空心原子M壳层空穴退激发射了能量0.7~1.75keV的Xe M X射线,下表面空心原子N壳层空穴退激发射了能量0.5~0.7keV的Xe N X射线。展开更多
探测了动能0.6 MeV的Xe^(26+)离子入射Mo靶,产生Xe M X及Mo L X射线谱。借助分子轨道相关图,分析碰撞过程离子与原子从离散态到联合态的分子轨道抬升情况,揭示出碰撞导致Mo原子产生L壳层空穴、Xe离子产生M壳层空穴的机制,解释了Xe M X...探测了动能0.6 MeV的Xe^(26+)离子入射Mo靶,产生Xe M X及Mo L X射线谱。借助分子轨道相关图,分析碰撞过程离子与原子从离散态到联合态的分子轨道抬升情况,揭示出碰撞导致Mo原子产生L壳层空穴、Xe离子产生M壳层空穴的机制,解释了Xe M X射线出现的能移与增宽效应。展开更多
文摘为了丰富过硫化氢分子和过硫化氢一价阳离子的电子基态和激发态的信息,采用量子化学中密度泛函理论的B3LYP方法,使用6-311++g(3df,3pd)基组,对其进行了研究。计算得到了过硫化氢分子HSSH基态和过硫化氢离子HSSH+基态及激发态的平衡构型、光谱常数、总能量和零点振动能。计算表明:过硫化氢中性分子是长对称陀螺分子,二面角为90.66°,具有C_2对称性,而过硫化氢离子HSSH+有顺式(二面角为0°)和反式(二面角为180°)两种稳定的异构体,反式结构基态能量比顺式结构基态能量低0.129 e V;此外计算还得到了过硫化氢离子HSSH+两种异构体的基态和激发态的电子结构。
文摘报导了1.0~3.0MeV的Xe^(30+)离子与1.0MeV的Xe^(26+)离子入射Au表面发射的X射线谱,考虑到探测器Be窗对射线的非均匀衰减,还原了1.0MeV的Xe^(30+)离子产生X射线谱。通过用经典过垒模型及两体碰撞模型的分析表明:动能1.0~3.0MeV的Xe^(30+)离子入射Au靶,下表面空心原子M壳层空穴退激发射了能量0.7~1.75keV的Xe M X射线,下表面空心原子N壳层空穴退激发射了能量0.5~0.7keV的Xe N X射线。