精准的风电功率预测结果可保障电网在安全稳定运行条件下提高风电并网容量。为提高风电功率预测精度,融合时间序列分解技术、机器学习及启发式算法提出一种风电功率双层组合预测模型。首先,构建经验模态分解技术和长短期记忆神经网络相...精准的风电功率预测结果可保障电网在安全稳定运行条件下提高风电并网容量。为提高风电功率预测精度,融合时间序列分解技术、机器学习及启发式算法提出一种风电功率双层组合预测模型。首先,构建经验模态分解技术和长短期记忆神经网络相结合(empirical mode decomposition combined with long short term memory network,EMD-LSTM)的预测模型。同时,构建变分模态分解技术、模拟退火算法及深度置信网络相结合(variational mode decomposition,simulated annealing combined with deep belief network,VMDSA-DBN)的预测模型。并将已构建的EMD-LSTM及VMDSA-DBN模型作为组合预测模型上层的基础预测模型。其次,利用极端梯度提升算法构建下层预测模型,并将上层2个基础预测模型的预测结果输入到下层预测模型,以得到最终的预测结果。最后,利用实测数据对此算法的有效性进行验证。证明所提出的双层组合预测模型较单一预测模型具有更高的预测精度。展开更多
文摘精准的风电功率预测结果可保障电网在安全稳定运行条件下提高风电并网容量。为提高风电功率预测精度,融合时间序列分解技术、机器学习及启发式算法提出一种风电功率双层组合预测模型。首先,构建经验模态分解技术和长短期记忆神经网络相结合(empirical mode decomposition combined with long short term memory network,EMD-LSTM)的预测模型。同时,构建变分模态分解技术、模拟退火算法及深度置信网络相结合(variational mode decomposition,simulated annealing combined with deep belief network,VMDSA-DBN)的预测模型。并将已构建的EMD-LSTM及VMDSA-DBN模型作为组合预测模型上层的基础预测模型。其次,利用极端梯度提升算法构建下层预测模型,并将上层2个基础预测模型的预测结果输入到下层预测模型,以得到最终的预测结果。最后,利用实测数据对此算法的有效性进行验证。证明所提出的双层组合预测模型较单一预测模型具有更高的预测精度。