设计出一款可应用于RFID(Radio Frequency Identification)系统的5.8 GHz传统矩形微带天线,天线辐射贴片尺寸为15.74 mm×11.12 mm,天线的回波损耗(S11)的实测结果为-23.276 d B。此后,在矩形微带天线基础上进行设计改进,通过分别蚀...设计出一款可应用于RFID(Radio Frequency Identification)系统的5.8 GHz传统矩形微带天线,天线辐射贴片尺寸为15.74 mm×11.12 mm,天线的回波损耗(S11)的实测结果为-23.276 d B。此后,在矩形微带天线基础上进行设计改进,通过分别蚀刻15个超材料结构I型谐振环和6个超材料结构开口谐振环SRR(Split Resonant Ring),构造出两款新型小型化天线。与传统矩形天线相比,在保持方向性、最大增益等参数性能基本不变的条件下,基于超材料结构的天线辐射贴片尺寸分别为12.44mm×9.12 mm和11.74 mm×9.1 mm,相比传统矩形天线分别缩小了35.2%和41.82%,辐射贴片小型化效果明显,其回波损耗实测结果分别为-21.83 d B和-15.40 d B。展开更多
设计了一种基于高电子迁移率晶体管ATF54143的单级低噪声放大器,采用ADS软件进行了设计优化。仿真结果表明在2.45 GHz处噪声系数小于1.5 d B,增益大于16.4 d B,稳定系数大于1.1,输入与输出的电压驻波比都小于1.1。在仿真基础上进行了实...设计了一种基于高电子迁移率晶体管ATF54143的单级低噪声放大器,采用ADS软件进行了设计优化。仿真结果表明在2.45 GHz处噪声系数小于1.5 d B,增益大于16.4 d B,稳定系数大于1.1,输入与输出的电压驻波比都小于1.1。在仿真基础上进行了实物加工,实测结果在2.45 GHz处|S21|为8.3 d B,|S11|和|S22|最小值分别为-13.5 d B,-17.2 d B,1 d B压缩点的输出功率约为10 d Bm。该放大器可应用于S波段的无线局域网,射频识别和北斗导航系统等领域。展开更多
通过把3种不同尺寸的L-bridge单元进行组合,在多层PCB板的电源层上,设计了一种新的多周期平面型超宽带电磁带隙(Electromagnetic Band Gap,EBG)结构,可用于抑制数字电路系统中的同步开关噪声(Simultaneous Switching Noise,SSN)。利用H...通过把3种不同尺寸的L-bridge单元进行组合,在多层PCB板的电源层上,设计了一种新的多周期平面型超宽带电磁带隙(Electromagnetic Band Gap,EBG)结构,可用于抑制数字电路系统中的同步开关噪声(Simultaneous Switching Noise,SSN)。利用HFSS软件对该EBG结构进行了建模和仿真,并在仿真基础上制作了电路实物,实测与仿真结果吻合良好。组合结构EBG比传统L-bridge EBG的阻带宽度有明显提高,当抑制深度为-40 d B时,具有从0.8 GHz到9.5 GHz的超宽带阻带特性。展开更多
为了解决印刷电路板(printed circuit board,PCB)上高速电路中由于同步开关噪声(simultaneous switching noise,SSN)所引起的信号完整性问题,设计了一种新型蜂窝状电磁带隙结构(cellular electromagnetic band gap structure,CE-EBG),...为了解决印刷电路板(printed circuit board,PCB)上高速电路中由于同步开关噪声(simultaneous switching noise,SSN)所引起的信号完整性问题,设计了一种新型蜂窝状电磁带隙结构(cellular electromagnetic band gap structure,CE-EBG),把传统的四边形周期单元改进为六边形,抑制同步开关噪声。利用HFSS软件对CE-EBG进行了建模和阻带特性的仿真。仿真结果表明,当抑制深度为-30 d B时,抑制带宽为3.75 GHz,相对带宽为132%,其中上限截止频率为4.7 GHz,下限截止频率为0.95 GHz。和传统的四边形EBG结构相比,其相对带宽增加了15%。在仿真基础上采用PCB工艺制作了CE-EBG结构实物,实测结果与仿真结果良好吻合。展开更多
文摘设计出一款可应用于RFID(Radio Frequency Identification)系统的5.8 GHz传统矩形微带天线,天线辐射贴片尺寸为15.74 mm×11.12 mm,天线的回波损耗(S11)的实测结果为-23.276 d B。此后,在矩形微带天线基础上进行设计改进,通过分别蚀刻15个超材料结构I型谐振环和6个超材料结构开口谐振环SRR(Split Resonant Ring),构造出两款新型小型化天线。与传统矩形天线相比,在保持方向性、最大增益等参数性能基本不变的条件下,基于超材料结构的天线辐射贴片尺寸分别为12.44mm×9.12 mm和11.74 mm×9.1 mm,相比传统矩形天线分别缩小了35.2%和41.82%,辐射贴片小型化效果明显,其回波损耗实测结果分别为-21.83 d B和-15.40 d B。
文摘设计了一种基于高电子迁移率晶体管ATF54143的单级低噪声放大器,采用ADS软件进行了设计优化。仿真结果表明在2.45 GHz处噪声系数小于1.5 d B,增益大于16.4 d B,稳定系数大于1.1,输入与输出的电压驻波比都小于1.1。在仿真基础上进行了实物加工,实测结果在2.45 GHz处|S21|为8.3 d B,|S11|和|S22|最小值分别为-13.5 d B,-17.2 d B,1 d B压缩点的输出功率约为10 d Bm。该放大器可应用于S波段的无线局域网,射频识别和北斗导航系统等领域。
文摘通过把3种不同尺寸的L-bridge单元进行组合,在多层PCB板的电源层上,设计了一种新的多周期平面型超宽带电磁带隙(Electromagnetic Band Gap,EBG)结构,可用于抑制数字电路系统中的同步开关噪声(Simultaneous Switching Noise,SSN)。利用HFSS软件对该EBG结构进行了建模和仿真,并在仿真基础上制作了电路实物,实测与仿真结果吻合良好。组合结构EBG比传统L-bridge EBG的阻带宽度有明显提高,当抑制深度为-40 d B时,具有从0.8 GHz到9.5 GHz的超宽带阻带特性。
文摘为了解决印刷电路板(printed circuit board,PCB)上高速电路中由于同步开关噪声(simultaneous switching noise,SSN)所引起的信号完整性问题,设计了一种新型蜂窝状电磁带隙结构(cellular electromagnetic band gap structure,CE-EBG),把传统的四边形周期单元改进为六边形,抑制同步开关噪声。利用HFSS软件对CE-EBG进行了建模和阻带特性的仿真。仿真结果表明,当抑制深度为-30 d B时,抑制带宽为3.75 GHz,相对带宽为132%,其中上限截止频率为4.7 GHz,下限截止频率为0.95 GHz。和传统的四边形EBG结构相比,其相对带宽增加了15%。在仿真基础上采用PCB工艺制作了CE-EBG结构实物,实测结果与仿真结果良好吻合。
文摘为了解决印制电路板中由同步开关噪声(simultaneous switching noise,SSN)引起的高速电路信号完整性问题,通过把传统S桥相邻单元电磁带隙结构连接线的直线改为折线并采用多缝隙的单元结构,设计了一种新型S桥电磁带隙结构(electromagnetic band gap,EBG)。利用Ansoft HFSS软件对该EBG结构进行了数据仿真,并进行了电路实物的加工与测试,仿真结果与实测结果良好吻合。在抑制深度为-30 d B时,其阻带范围为0.2~9.8 GHz,相对阻带宽度为192%,与传统S桥EBG结构相比阻带宽度增加了2.8 GHz,可以更好地抑制同步开关噪声。