期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多视图自编码器的多被试者脑影像功能校准
1
作者 黄硕 孙亮 +1 位作者 汪美玲 张道强 《计算机科学》 CSCD 北大核心 2024年第3期141-146,共6页
功能磁共振成像(functional Magnetic Resonance Imaging,fMRI)研究面临的主要挑战之一是不同被试者fMRI数据的异质性。一方面,多被试数据分析对于确定所生成结果跨被试的通用性和有效性至关重要。另一方面,分析多被试者fMRI数据需要在... 功能磁共振成像(functional Magnetic Resonance Imaging,fMRI)研究面临的主要挑战之一是不同被试者fMRI数据的异质性。一方面,多被试数据分析对于确定所生成结果跨被试的通用性和有效性至关重要。另一方面,分析多被试者fMRI数据需要在不同被试者的神经活动之间进行准确的解剖和功能校准,以提升最终结果的性能。然而,现有大多数功能校准研究都采用浅层模型来处理多被试者间的复杂关系,这严重束缚了多被试信息的建模能力。为此,提出了一种基于多视图自编码器的功能校准(Multi-view Auto-encoder Functional Alignment,MAFA)方法。具体地,该方法通过重构不同被试者的响应空间来学习节点嵌入,捕获不同被试者之间共享的特征表示,从而创建一个公共的响应空间。此外,通过引入自训练聚类目标,利用高置信度节点作为软标签来监督图聚类过程。在4个数据集上的实验结果表明,相比其他多被试者脑影像功能校准方法,所提方法在解码精度方面取得了最佳效果。 展开更多
关键词 功能磁共振成像 功能校准 多视图表示学习 多被试分析 脑解码
下载PDF
基于卷积神经网络和领域泛化的跨操作员认知负荷识别
2
作者 周月莹 公沛良 +2 位作者 王澎湃 温旭云 张道强 《电子与信息学报》 EI CSCD 北大核心 2023年第8期2796-2805,共10页
基于脑电信号(EEG)的操作员认知负荷识别(CWR)在人机交互系统和被动式脑机接口中有重要价值,然而EEG的非稳态性和被试差异性极大阻碍了跨操作员CWR这一现实场景的快速应用。该文针对跨操作员CWR精度低等问题,提出一种基于卷积神经网络(C... 基于脑电信号(EEG)的操作员认知负荷识别(CWR)在人机交互系统和被动式脑机接口中有重要价值,然而EEG的非稳态性和被试差异性极大阻碍了跨操作员CWR这一现实场景的快速应用。该文针对跨操作员CWR精度低等问题,提出一种基于卷积神经网络(CNN)和领域泛化(DG)的联合共享特征优化方法(CNN_DG)。该方法通过使用已有操作员(源域)的数据提高未知操作员(目标域)的CWR性能,其主要包括3个模块:深度特征提取器、标签分类器和领域泛化器。深度特征提取器学习可迁移的源域之间的共享知识表征;标签分类器进一步学习深层表征并预测负荷级别;领域泛化器通过与特征提取器进行对抗训练来减少源域间的数据分布差异,从而保证学习特征的共享性。该文在多属性任务组(MATB II)模拟飞行任务竞赛数据集1和2上进行两个三分类的跨操作员CWR实验,并采用留一被试交叉验证策略验证模型识别性能。实验结果表明所提CNN_DG方法显著优于比较方法,验证了其在跨操作员CWR领域的有效性和泛化性。 展开更多
关键词 人机交互 认知负荷 跨操作员 卷积神经网络 领域泛化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部