提出采用一种3层改进型快速BP神经网络(Modified fast BP neural network,MFBPNN)求解一个5自由度多关节机器人逆向运动学问题。使用正向运动学计算获得的样本向量进行离线学习,然后充分利用人工神经网络的泛化特性,实现了机器人末端作...提出采用一种3层改进型快速BP神经网络(Modified fast BP neural network,MFBPNN)求解一个5自由度多关节机器人逆向运动学问题。使用正向运动学计算获得的样本向量进行离线学习,然后充分利用人工神经网络的泛化特性,实现了机器人末端作用器位姿到各个关节转角变量之间的非线性映射。仿真结果表明,采用MFBPNN算法以后,绝对误差不超过0.005°,计算精度和处理速度能够满足机器人实时控制的要求,并且可以应用于机器人路径规划控制场合。展开更多
文摘提出采用一种3层改进型快速BP神经网络(Modified fast BP neural network,MFBPNN)求解一个5自由度多关节机器人逆向运动学问题。使用正向运动学计算获得的样本向量进行离线学习,然后充分利用人工神经网络的泛化特性,实现了机器人末端作用器位姿到各个关节转角变量之间的非线性映射。仿真结果表明,采用MFBPNN算法以后,绝对误差不超过0.005°,计算精度和处理速度能够满足机器人实时控制的要求,并且可以应用于机器人路径规划控制场合。