期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于人工智能的冠状动脉CT血管成像检测阻塞性冠状动脉狭窄效能的研究 被引量:15
1
作者 刘春雨 谢媛 +5 位作者 苏晓芹 杨振悦 陈随 周长圣 李建华 徐峰 《国际医学放射学杂志》 北大核心 2021年第5期516-522,共7页
目的以有创冠状动脉造影(ICA)为参考标准,探讨人工智能(AI)辅助的冠状动脉CT血管成像(CCTA)诊断阻塞性冠状动脉狭窄的效能。方法回顾性收集行CCTA检查并于3个月内行ICA检查的50例疑患冠状动脉疾病(CAD)的病人,男34例,女16例,平均年龄(61... 目的以有创冠状动脉造影(ICA)为参考标准,探讨人工智能(AI)辅助的冠状动脉CT血管成像(CCTA)诊断阻塞性冠状动脉狭窄的效能。方法回顾性收集行CCTA检查并于3个月内行ICA检查的50例疑患冠状动脉疾病(CAD)的病人,男34例,女16例,平均年龄(61.8±8.5)岁。AI软件、不同年资医师(低/中/高年资)及AI+不同年资医师分别对入组病人CCTA影像进行后处理并解读。将ICA和CCTA上冠状动脉管腔狭窄≥50%定义为阻塞性冠状动脉狭窄。采用Agatston积分法测量病人的钙化积分值,并将病人分为低钙化组(钙化积分<100)和高钙化组(钙化积分≥100)。采用独立样本t检验对AI、医师及AI+医师的图像后处理和解读时间进行两两比较。以ICA为参考标准,分析AI在不同研究水平和高/低钙化组的诊断价值,并比较AI、不同年资医师和AI+不同年资医师的诊断敏感度、特异度、阳性预测值、阴性预测值、准确度及受试者操作特征(ROC)曲线下面积(AUC)。采用Pearson卡方检验或Fisher精确概率检验比较组间差异,采用DeLong检验比较AUC。结果50例病人共分析195支血管424个节段。AI和AI+医师的平均后处理和解读时间均低于单独医师诊断的时间(均P<0.05),AI的时间较低/中/高年资医师分别减少了80%、76.8%和75%;AI+低/中/高年资医师较单独医师分别减少了67%、64%、57.9%。在病人、血管及节段水平,AI诊断阻塞性冠状动脉狭窄的敏感度分别为93.7%、83.1%、67.7%,特异度为50.0%、89.0%、91.0%,准确度为92%、86.7%、85.6%,阳性预测值为97.8%、83.1%、69.8%,阴性预测值为25%、89.0%、90.2%,AUC为0.87、0.89、0.83;在血管及节段水平,AI对低钙化组的特异度高于高钙化组(均P<0.05)。在血管水平,AI诊断的AUC值均低于中/高年资医师(均P<0.05);其余研究水平,AI与其他不同年资医师诊断的AUC值差异均无统计学意义(均P>0.05)。3种研究水平下,AI+低/中/高年资医师诊断的AUC� 展开更多
关键词 人工智能 诊断效能 冠状动脉CT血管成像 冠状动脉狭窄
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部