期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于人工智能的冠状动脉CT血管成像检测阻塞性冠状动脉狭窄效能的研究
被引量:
15
1
作者
刘春雨
谢媛
+5 位作者
苏晓芹
杨振悦
陈随
周长圣
李建华
徐峰
《国际医学放射学杂志》
北大核心
2021年第5期516-522,共7页
目的以有创冠状动脉造影(ICA)为参考标准,探讨人工智能(AI)辅助的冠状动脉CT血管成像(CCTA)诊断阻塞性冠状动脉狭窄的效能。方法回顾性收集行CCTA检查并于3个月内行ICA检查的50例疑患冠状动脉疾病(CAD)的病人,男34例,女16例,平均年龄(61...
目的以有创冠状动脉造影(ICA)为参考标准,探讨人工智能(AI)辅助的冠状动脉CT血管成像(CCTA)诊断阻塞性冠状动脉狭窄的效能。方法回顾性收集行CCTA检查并于3个月内行ICA检查的50例疑患冠状动脉疾病(CAD)的病人,男34例,女16例,平均年龄(61.8±8.5)岁。AI软件、不同年资医师(低/中/高年资)及AI+不同年资医师分别对入组病人CCTA影像进行后处理并解读。将ICA和CCTA上冠状动脉管腔狭窄≥50%定义为阻塞性冠状动脉狭窄。采用Agatston积分法测量病人的钙化积分值,并将病人分为低钙化组(钙化积分<100)和高钙化组(钙化积分≥100)。采用独立样本t检验对AI、医师及AI+医师的图像后处理和解读时间进行两两比较。以ICA为参考标准,分析AI在不同研究水平和高/低钙化组的诊断价值,并比较AI、不同年资医师和AI+不同年资医师的诊断敏感度、特异度、阳性预测值、阴性预测值、准确度及受试者操作特征(ROC)曲线下面积(AUC)。采用Pearson卡方检验或Fisher精确概率检验比较组间差异,采用DeLong检验比较AUC。结果50例病人共分析195支血管424个节段。AI和AI+医师的平均后处理和解读时间均低于单独医师诊断的时间(均P<0.05),AI的时间较低/中/高年资医师分别减少了80%、76.8%和75%;AI+低/中/高年资医师较单独医师分别减少了67%、64%、57.9%。在病人、血管及节段水平,AI诊断阻塞性冠状动脉狭窄的敏感度分别为93.7%、83.1%、67.7%,特异度为50.0%、89.0%、91.0%,准确度为92%、86.7%、85.6%,阳性预测值为97.8%、83.1%、69.8%,阴性预测值为25%、89.0%、90.2%,AUC为0.87、0.89、0.83;在血管及节段水平,AI对低钙化组的特异度高于高钙化组(均P<0.05)。在血管水平,AI诊断的AUC值均低于中/高年资医师(均P<0.05);其余研究水平,AI与其他不同年资医师诊断的AUC值差异均无统计学意义(均P>0.05)。3种研究水平下,AI+低/中/高年资医师诊断的AUC�
展开更多
关键词
人工智能
诊断效能
冠状动脉CT血管成像
冠状动脉狭窄
下载PDF
职称材料
题名
基于人工智能的冠状动脉CT血管成像检测阻塞性冠状动脉狭窄效能的研究
被引量:
15
1
作者
刘春雨
谢媛
苏晓芹
杨振悦
陈随
周长圣
李建华
徐峰
机构
南京大学
医学院
附属
金陵
医院
东部
战区
总医院
放射诊断科
南京大学
医学院
附属
金陵
医院
东部
战区
总医院
心内科
南京
医科
大学
附属
宿迁第一人民
医院
医学
影像科
出处
《国际医学放射学杂志》
北大核心
2021年第5期516-522,共7页
基金
国家重点研发计划项目(2017YFC0113400)。
文摘
目的以有创冠状动脉造影(ICA)为参考标准,探讨人工智能(AI)辅助的冠状动脉CT血管成像(CCTA)诊断阻塞性冠状动脉狭窄的效能。方法回顾性收集行CCTA检查并于3个月内行ICA检查的50例疑患冠状动脉疾病(CAD)的病人,男34例,女16例,平均年龄(61.8±8.5)岁。AI软件、不同年资医师(低/中/高年资)及AI+不同年资医师分别对入组病人CCTA影像进行后处理并解读。将ICA和CCTA上冠状动脉管腔狭窄≥50%定义为阻塞性冠状动脉狭窄。采用Agatston积分法测量病人的钙化积分值,并将病人分为低钙化组(钙化积分<100)和高钙化组(钙化积分≥100)。采用独立样本t检验对AI、医师及AI+医师的图像后处理和解读时间进行两两比较。以ICA为参考标准,分析AI在不同研究水平和高/低钙化组的诊断价值,并比较AI、不同年资医师和AI+不同年资医师的诊断敏感度、特异度、阳性预测值、阴性预测值、准确度及受试者操作特征(ROC)曲线下面积(AUC)。采用Pearson卡方检验或Fisher精确概率检验比较组间差异,采用DeLong检验比较AUC。结果50例病人共分析195支血管424个节段。AI和AI+医师的平均后处理和解读时间均低于单独医师诊断的时间(均P<0.05),AI的时间较低/中/高年资医师分别减少了80%、76.8%和75%;AI+低/中/高年资医师较单独医师分别减少了67%、64%、57.9%。在病人、血管及节段水平,AI诊断阻塞性冠状动脉狭窄的敏感度分别为93.7%、83.1%、67.7%,特异度为50.0%、89.0%、91.0%,准确度为92%、86.7%、85.6%,阳性预测值为97.8%、83.1%、69.8%,阴性预测值为25%、89.0%、90.2%,AUC为0.87、0.89、0.83;在血管及节段水平,AI对低钙化组的特异度高于高钙化组(均P<0.05)。在血管水平,AI诊断的AUC值均低于中/高年资医师(均P<0.05);其余研究水平,AI与其他不同年资医师诊断的AUC值差异均无统计学意义(均P>0.05)。3种研究水平下,AI+低/中/高年资医师诊断的AUC�
关键词
人工智能
诊断效能
冠状动脉CT血管成像
冠状动脉狭窄
Keywords
Artificial intelligence
Diagnostic performance
Coronary computed tomography angiography
Coronary artery stenosis
分类号
R543.31 [医药卫生—心血管疾病]
R445.3 [医药卫生—内科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于人工智能的冠状动脉CT血管成像检测阻塞性冠状动脉狭窄效能的研究
刘春雨
谢媛
苏晓芹
杨振悦
陈随
周长圣
李建华
徐峰
《国际医学放射学杂志》
北大核心
2021
15
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部