局部线性嵌入(Locally linear embedding,LLE)算法通过局部线性来逼近全局的非线性,优点在于可保持降维前后样本点近邻之间的线性结构不变,并且计算速度较快。但是该算法对近邻值的选择十分敏感,不同近邻点数的选择对降维效果影响较大...局部线性嵌入(Locally linear embedding,LLE)算法通过局部线性来逼近全局的非线性,优点在于可保持降维前后样本点近邻之间的线性结构不变,并且计算速度较快。但是该算法对近邻值的选择十分敏感,不同近邻点数的选择对降维效果影响较大。针对此问题,利用残差作为评价降维前后保持样本距离信息优劣的指标,提出一种改进的可变近邻局部线性嵌入(Variable K-nearest neighbor locally linear embedding,VKLLE)算法,即通过给定一个最大近邻数目值,比较降维前后的残差值,根据较小值选择最优的近邻点数,从而使得每个样本点的近邻点数可据残差值进行调整。通过对手写体数字(Mixingnational institute of standards and technology,MNIST)数据集的仿真分析,并与LLE算法进行比较,此方法降维效果更好,计算复杂度也明显降低。最后将该算法运用于轴承状态识别,取得了较好的效果,同时还有效地提高了分类性能和稳定性。展开更多
文摘局部线性嵌入(Locally linear embedding,LLE)算法通过局部线性来逼近全局的非线性,优点在于可保持降维前后样本点近邻之间的线性结构不变,并且计算速度较快。但是该算法对近邻值的选择十分敏感,不同近邻点数的选择对降维效果影响较大。针对此问题,利用残差作为评价降维前后保持样本距离信息优劣的指标,提出一种改进的可变近邻局部线性嵌入(Variable K-nearest neighbor locally linear embedding,VKLLE)算法,即通过给定一个最大近邻数目值,比较降维前后的残差值,根据较小值选择最优的近邻点数,从而使得每个样本点的近邻点数可据残差值进行调整。通过对手写体数字(Mixingnational institute of standards and technology,MNIST)数据集的仿真分析,并与LLE算法进行比较,此方法降维效果更好,计算复杂度也明显降低。最后将该算法运用于轴承状态识别,取得了较好的效果,同时还有效地提高了分类性能和稳定性。