期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
肾细胞癌与乏脂肪肾血管平滑肌脂肪瘤的鉴别分类模型:基于随机投影的多分类器分层融合框架
1
作者 莫天澜 吴煜良 +1 位作者 杨蕊梦 甄鑫 《南方医科大学学报》 CAS CSCD 北大核心 2022年第8期1174-1181,共8页
目的研究基于随机投影的多分类器分层融合的分类模型对良性肾小肿块乏脂肪肾血管平滑肌脂肪瘤(<4 cm)(AMLwvf)和恶性肾小肿块肾细胞癌(RCC)的鉴别能力。方法回顾性收集163例经病理证实存在肾小肿块的患者,其中118例为肾细胞癌,45例... 目的研究基于随机投影的多分类器分层融合的分类模型对良性肾小肿块乏脂肪肾血管平滑肌脂肪瘤(<4 cm)(AMLwvf)和恶性肾小肿块肾细胞癌(RCC)的鉴别能力。方法回顾性收集163例经病理证实存在肾小肿块的患者,其中118例为肾细胞癌,45例为乏脂肪肾血管平滑肌脂肪瘤,对平扫CT图像中病灶面积最大的代表性切片进行目标感兴趣区域(ROI)勾画,利用放射组学特征构建一个层次型的融合框架。在投影域水平上对同质分类器进行融合,然后在分类器水平上对融合结果进行进一步融合,最终得到基于随机投影的多分类器分层融合的AMLwvf和RCC鉴别分类模型。采用五折交叉验证方法和特异性(SPE)、灵敏度(SEN)、准确率(ACC)、ROC曲线下面积(AUC)评价AMLwvf与RCC鉴别分类模型的性能。将本研究所提模型与使用单一基分类器算法以及几种传统的集成模型对AMLwvf和RCC的鉴别分类能力进行定量比较,验证本研究所提鉴别模型的可行性和有效性。结果投影数设置为10时,本文提出的分层融合鉴别模型在所有指标上获得最好的结果。基于投影数为10的前提,五折交叉验证结果显示本研究所提出的基于多分类器分层融合的AMLwvf和RCC鉴别分类模型的SPE、SEN、ACC、AUC分别为:0.853、0.693、0.809、0.870。结论基于随机投影的多分类器集成分类系统构建的AMLwvf和RCC鉴别模型可以很好地对AMLwvf和RCC进行鉴别分类。同时与基于单一分类器算法以及其他多分类器集成系统构建的AMLwvf和RCC的鉴别模型相比,本文所提出鉴别模型在AMLwvf和RCC的鉴别分类任务中具有较大优势。 展开更多
关键词 多分类器 分层融合框架 随机投影 肾细胞癌 乏脂肪肾血管平滑肌脂肪瘤
下载PDF
基于MRI影像组学预测乳腺癌新辅助化疗后肿瘤退缩模式的研究 被引量:5
2
作者 刘晨 陈小波 +4 位作者 黄晓媚 陈明蕾 陈鑫 王瑛 刘再毅 《磁共振成像》 CAS CSCD 北大核心 2023年第3期28-35,共8页
目的基于治疗前乳腺MRI影像组学定量特征,并融合MRI定性影像特征及临床病理信息建立联合模型用于早期预测乳腺癌新辅助化疗后肿瘤退缩模式。材料与方法回顾性分析广东省人民医院2012年2月至2020年8月接受新辅助化疗并进行手术的420例乳... 目的基于治疗前乳腺MRI影像组学定量特征,并融合MRI定性影像特征及临床病理信息建立联合模型用于早期预测乳腺癌新辅助化疗后肿瘤退缩模式。材料与方法回顾性分析广东省人民医院2012年2月至2020年8月接受新辅助化疗并进行手术的420例乳腺癌患者临床资料。以手术标本的病理结果为金标准,将肿瘤退缩模式分为向心性和非向心性退缩。根据MRI检查时间顺序以7∶3的比例分为训练组(n=294)、验证组(n=126)。在动态增强MRI的第2期增强图像中对原发灶进行感兴趣区勾画,并提取影像组学特征。采用两独立样本t检验或Mann-Whitney U检验、相关性分析及最小绝对收缩和选择算子-logistic回归分析对影像组学特征进行降维筛选,然后基于人工神经网络建立影像组学标签。通过单因素、多因素logistic筛选显著相关的临床病理特征建立临床预测模型,并联合定性影像学特征和影像组学标签构建联合预测模型。使用受试者工作特征(receiver operating characteristic,ROC)曲线和校准曲线评估模型性能,并使用决策曲线分析(decision curve analysis,DCA)评价预测模型的临床实用性。结果本研究共筛选出8个与肿瘤退缩模式显著相关的影像组学特征。在训练组和验证组中,影像组学标签的曲线下面积(area under the curve,AUC)分别为0.738(95%CI:0.705~0.754)和0.696(95%CI:0.585~0.712);临床预测模型AUC值分别为0.676(95%CI:0.636~0.741)和0.619(95%CI:0.601~0.716);联合预测模型的AUC值分别为0.802(95%CI:0.753~0.824)和0.764(95%CI:0.685~0.820)。DCA显示联合模型具有临床应用价值。结论融合乳腺癌新辅助治疗前MRI的影像组学定量特征和定性影像学特征及临床病理信息所构建的联合模型有助于预测肿瘤退缩模式,有望协助临床早期识别可降期保乳的患者,以优化个体化诊疗方案,改善患者预后。 展开更多
关键词 乳腺癌 肿瘤退缩模式 影像组学 新辅助治疗 保乳术 磁共振成像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部