Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subseq...Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subsequently conducted under greenhouse conditions to further characterize APase activity and its isoform expression induced by P starvation. Results from the field experiment showed that there was a great genotypic variation for leaf APase activity among the tested soybean genotypes from different origins, and APase activity in many of the tested genotypes (about 60%) was generally increased in the treatment without P fertilizer addition. Results from the nutrient solution culture experiment showed that APase activity in all the eight tested genotypes was generally enhanced by P starvation. Six isoforms of APases were detected in isoelectric focusing gels with samples from both young and old leaves. The activity of all the six isoforms was increased by P starvation, but no new APase isoform was induced. Our results suggest that leaf APase activity could serve as an enzymatic indicator of P starvation for soybean; the increase in leaf APase activity under low P stress was mainly caused by the increase in the activity of existing isoforms but not by the induction of new isoforms.展开更多
文摘Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subsequently conducted under greenhouse conditions to further characterize APase activity and its isoform expression induced by P starvation. Results from the field experiment showed that there was a great genotypic variation for leaf APase activity among the tested soybean genotypes from different origins, and APase activity in many of the tested genotypes (about 60%) was generally increased in the treatment without P fertilizer addition. Results from the nutrient solution culture experiment showed that APase activity in all the eight tested genotypes was generally enhanced by P starvation. Six isoforms of APases were detected in isoelectric focusing gels with samples from both young and old leaves. The activity of all the six isoforms was increased by P starvation, but no new APase isoform was induced. Our results suggest that leaf APase activity could serve as an enzymatic indicator of P starvation for soybean; the increase in leaf APase activity under low P stress was mainly caused by the increase in the activity of existing isoforms but not by the induction of new isoforms.