期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BiGRU-Attention-CNN模型的垃圾邮件检测方法
被引量:
5
1
作者
赵宇轩
胡怀湘
《计算机与现代化》
2021年第4期122-126,共5页
电子邮件是一种重要的通信工具,但是垃圾邮件问题一直影响着人们日常的工作生活。不断改进垃圾邮件的检测技术、提高垃圾邮件的检测速度和准确率有着重要的研究意义和现实意义。双向门控循环单元(BiGRU)和卷积神经网络(CNN)广泛应用于...
电子邮件是一种重要的通信工具,但是垃圾邮件问题一直影响着人们日常的工作生活。不断改进垃圾邮件的检测技术、提高垃圾邮件的检测速度和准确率有着重要的研究意义和现实意义。双向门控循环单元(BiGRU)和卷积神经网络(CNN)广泛应用于文本分类领域,二者的结合可以充分发挥BiGRU上下文依赖关系提取能力以及CNN特征提取能力,但是针对垃圾邮件检测问题,还需要考虑邮件中一些特定的词语,因此本文提出一种基于BiGRU-Attention-CNN模型的垃圾邮件检测方法来提高垃圾邮件的检测准确率。模型首先将邮件文本转换成特征向量并进行BiGRU序列化学习,随后引入注意力机制(Attention)对特定词语赋予更大的权重,再将注意力层输入CNN模型,经过卷积、池化、全连接,最终得到分类结果。本文将模型在Trec06c邮件数据集上进行实验,与其他模型进行对比取得了更好的效果,最终模型的准确率达到91.62%。
展开更多
关键词
双向门控循环单元
注意力机制
卷积神经网络
垃圾邮件识别
下载PDF
职称材料
题名
基于BiGRU-Attention-CNN模型的垃圾邮件检测方法
被引量:
5
1
作者
赵宇轩
胡怀湘
机构
华北
计算技术
研究所
基础
一部
出处
《计算机与现代化》
2021年第4期122-126,共5页
文摘
电子邮件是一种重要的通信工具,但是垃圾邮件问题一直影响着人们日常的工作生活。不断改进垃圾邮件的检测技术、提高垃圾邮件的检测速度和准确率有着重要的研究意义和现实意义。双向门控循环单元(BiGRU)和卷积神经网络(CNN)广泛应用于文本分类领域,二者的结合可以充分发挥BiGRU上下文依赖关系提取能力以及CNN特征提取能力,但是针对垃圾邮件检测问题,还需要考虑邮件中一些特定的词语,因此本文提出一种基于BiGRU-Attention-CNN模型的垃圾邮件检测方法来提高垃圾邮件的检测准确率。模型首先将邮件文本转换成特征向量并进行BiGRU序列化学习,随后引入注意力机制(Attention)对特定词语赋予更大的权重,再将注意力层输入CNN模型,经过卷积、池化、全连接,最终得到分类结果。本文将模型在Trec06c邮件数据集上进行实验,与其他模型进行对比取得了更好的效果,最终模型的准确率达到91.62%。
关键词
双向门控循环单元
注意力机制
卷积神经网络
垃圾邮件识别
Keywords
BiGRU
attention
CNN
spam recognition
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于BiGRU-Attention-CNN模型的垃圾邮件检测方法
赵宇轩
胡怀湘
《计算机与现代化》
2021
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部