期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于增强CVAE的三维射线重构方法
被引量:
1
1
作者
朱军
杨军
+1 位作者
李凯
于文欣
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2022年第5期36-41,共6页
射线追踪数据的样本空间不完备性是造成大规模多输入多输出信道幅值预测出现高预测误差用户较多的主要原因。为了更全面地表征所有用户的信道传播特征,提出了一种基于扩展概率分布的条件变分自编码器(CVAE)的三维射线重构方法。该方法...
射线追踪数据的样本空间不完备性是造成大规模多输入多输出信道幅值预测出现高预测误差用户较多的主要原因。为了更全面地表征所有用户的信道传播特征,提出了一种基于扩展概率分布的条件变分自编码器(CVAE)的三维射线重构方法。该方法基于用户射线样本的稀疏度选择先验概率分布,通过增强CVAE为高误差用户生成新的射线样本训练集,使射线追踪数据的隐变量分布更符合高误差用户的特征。仿真结果表明,基于所提出的方法在原有射线样本训练集中扩充新样本后,可将高预测误差用户数降低到原来的53.59%;使用新训练集训练的神经网络在得到大幅降低预测信道幅值时间开销的同时,将信道幅值预测精度提升了7.8%。
展开更多
关键词
大规模多输入多输出
三维信道模型
条件变分自编码器
射线追踪
原文传递
题名
基于增强CVAE的三维射线重构方法
被引量:
1
1
作者
朱军
杨军
李凯
于文欣
机构
安徽大学电子信息工程学院
上海
科技大学信息科学与技术学院
华为
上海
研究所
lte
公共性
能
开发部
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2022年第5期36-41,共6页
基金
国家自然科学基金项目(62071002)。
文摘
射线追踪数据的样本空间不完备性是造成大规模多输入多输出信道幅值预测出现高预测误差用户较多的主要原因。为了更全面地表征所有用户的信道传播特征,提出了一种基于扩展概率分布的条件变分自编码器(CVAE)的三维射线重构方法。该方法基于用户射线样本的稀疏度选择先验概率分布,通过增强CVAE为高误差用户生成新的射线样本训练集,使射线追踪数据的隐变量分布更符合高误差用户的特征。仿真结果表明,基于所提出的方法在原有射线样本训练集中扩充新样本后,可将高预测误差用户数降低到原来的53.59%;使用新训练集训练的神经网络在得到大幅降低预测信道幅值时间开销的同时,将信道幅值预测精度提升了7.8%。
关键词
大规模多输入多输出
三维信道模型
条件变分自编码器
射线追踪
Keywords
massive multiple-input multiple-output
3D channel model
conditional variational auto-encoder
ray-tracing
分类号
TN911 [电子电信—通信与信息系统]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于增强CVAE的三维射线重构方法
朱军
杨军
李凯
于文欣
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2022
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部