期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于视觉注意模型的苗期油菜田间杂草检测
被引量:
9
1
作者
吴兰兰
徐恺
熊利荣
《华中农业大学学报》
CAS
CSCD
北大核心
2018年第2期96-102,共7页
提出了基于视觉注意模型的苗期油菜/杂草图像检测方法。针对苗期油菜大田环境,获取油菜/杂草RGB原始图像。根据原始图像颜色分布特点改进Itti模型,生成系列特征显著图,结合区域生长算法分割出感兴趣区域。针对该区域提取形状和纹理特征...
提出了基于视觉注意模型的苗期油菜/杂草图像检测方法。针对苗期油菜大田环境,获取油菜/杂草RGB原始图像。根据原始图像颜色分布特点改进Itti模型,生成系列特征显著图,结合区域生长算法分割出感兴趣区域。针对该区域提取形状和纹理特征参数作为支持向量机输入量,判别出所有油菜区域,最后融合原始图像和油菜区域获取最终株间杂草区域。结果表明:与局部迭代阈值法和最大类间方差法相比,本研究提出的图像分割方法更优,正确分割目标概率、错误分割目标概率及漏分割目标概率分别为92.46%、3.26%及7.54%;针对形状、纹理、综合特征及精选特征四类特征参数集,径向基-支持向量机的识别率分别为96.00%、94.29%、100.00%及96.00%。
展开更多
关键词
Itti模型
显著图
图像分割
支持向量机
大田油菜
杂草识别
下载PDF
职称材料
题名
基于视觉注意模型的苗期油菜田间杂草检测
被引量:
9
1
作者
吴兰兰
徐恺
熊利荣
机构
华中农业大学
工学院
华中农业大学
农业部
长江
中下游
农业装备
重点
实验室
.
武汉
出处
《华中农业大学学报》
CAS
CSCD
北大核心
2018年第2期96-102,共7页
基金
国家自然科学基金项目(31401288)
中央高校基本科研业务费专项(2662015PY078)
文摘
提出了基于视觉注意模型的苗期油菜/杂草图像检测方法。针对苗期油菜大田环境,获取油菜/杂草RGB原始图像。根据原始图像颜色分布特点改进Itti模型,生成系列特征显著图,结合区域生长算法分割出感兴趣区域。针对该区域提取形状和纹理特征参数作为支持向量机输入量,判别出所有油菜区域,最后融合原始图像和油菜区域获取最终株间杂草区域。结果表明:与局部迭代阈值法和最大类间方差法相比,本研究提出的图像分割方法更优,正确分割目标概率、错误分割目标概率及漏分割目标概率分别为92.46%、3.26%及7.54%;针对形状、纹理、综合特征及精选特征四类特征参数集,径向基-支持向量机的识别率分别为96.00%、94.29%、100.00%及96.00%。
关键词
Itti模型
显著图
图像分割
支持向量机
大田油菜
杂草识别
Keywords
Itti model
saliency map
image segmentation
SVM
seedling rapeseed oil field
weed detection
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
S451 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于视觉注意模型的苗期油菜田间杂草检测
吴兰兰
徐恺
熊利荣
《华中农业大学学报》
CAS
CSCD
北大核心
2018
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部