目的:由于胰腺体积小、形态个体差异性大,影像上的准确分割较为困难。本文提出一种基于2.5D级联卷积神经网络的CT图像胰腺分割方法。方法:实验中使用的数据为NIH胰腺分割公开数据集,共包含82例腹部CT图像,随机选取其中56、9、17例分别...目的:由于胰腺体积小、形态个体差异性大,影像上的准确分割较为困难。本文提出一种基于2.5D级联卷积神经网络的CT图像胰腺分割方法。方法:实验中使用的数据为NIH胰腺分割公开数据集,共包含82例腹部CT图像,随机选取其中56、9、17例分别作为训练集、验证集和测试集;训练过程中使用旋转、拉伸、平移、裁剪等操作对数据进行扩增。实验中提出一种用于胰腺分割的、结合概率图的2.5D级联深度监督UNet,即CSNet(Cascading deep Supervision UNet)。该网络由3个部分组成:第1部分基于UNet,输入连续5层图像,输出中间3层对应的粗分割图像,设置适当的阈值,使其变成二值的粗分割结果;第2部分将第1层、第3层的粗分割结果与中间层的原始图像相结合,输入另一个深度监督UNet网络,得到中间层的精细分割;第3部分将第1部分网络输出的中间层的粗分割概率图与第2部分网络输出的细分割概率图通过1×1卷积进行概率融合得到最终的输出结果。3个子网络同时进行训练,对应的能量函数联合优化,从而得到更精准的分割结果。最后,使用DSC对分割结果进行评估。结果:在独立测试集上,CSNet实现了(83.74±5.27)%的DSC值。结论:CSNet可以准确分割出CT图像上的胰腺区域。展开更多
文摘目的:由于胰腺体积小、形态个体差异性大,影像上的准确分割较为困难。本文提出一种基于2.5D级联卷积神经网络的CT图像胰腺分割方法。方法:实验中使用的数据为NIH胰腺分割公开数据集,共包含82例腹部CT图像,随机选取其中56、9、17例分别作为训练集、验证集和测试集;训练过程中使用旋转、拉伸、平移、裁剪等操作对数据进行扩增。实验中提出一种用于胰腺分割的、结合概率图的2.5D级联深度监督UNet,即CSNet(Cascading deep Supervision UNet)。该网络由3个部分组成:第1部分基于UNet,输入连续5层图像,输出中间3层对应的粗分割图像,设置适当的阈值,使其变成二值的粗分割结果;第2部分将第1层、第3层的粗分割结果与中间层的原始图像相结合,输入另一个深度监督UNet网络,得到中间层的精细分割;第3部分将第1部分网络输出的中间层的粗分割概率图与第2部分网络输出的细分割概率图通过1×1卷积进行概率融合得到最终的输出结果。3个子网络同时进行训练,对应的能量函数联合优化,从而得到更精准的分割结果。最后,使用DSC对分割结果进行评估。结果:在独立测试集上,CSNet实现了(83.74±5.27)%的DSC值。结论:CSNet可以准确分割出CT图像上的胰腺区域。