期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
新的基于双ZED摄像头的心肺复苏按压姿势检测模型 被引量:2
1
作者 宋菲 宁泽惺 +6 位作者 陈超 王淳秀 王亚军 费甄甄 杭莺 李瑞瑞 尹春琳 《中华急诊医学杂志》 CAS CSCD 北大核心 2023年第9期1189-1194,共6页
目的正确的胸外按压姿势(chest compression posture,CCP)是完成高质量心肺复苏(cardiopulmonary resuscitation,CPR)的重要基础,但目前关注CCP的研究十分有限。本研究设计新的CPR按压姿势自动分析程序,拟实现对CCP监测达到客观化、标... 目的正确的胸外按压姿势(chest compression posture,CCP)是完成高质量心肺复苏(cardiopulmonary resuscitation,CPR)的重要基础,但目前关注CCP的研究十分有限。本研究设计新的CPR按压姿势自动分析程序,拟实现对CCP监测达到客观化、标准化和自动化的目的。方法本研究共招募15人参与现场试验,其中专业组11人,非专业组4人。分别于正前方和45度侧面用ZED双摄像头同时记录按压视频数据,所有参与人员均在Smartman模拟人上进行连续的120次持续胸外按压操作。3位专家对CPR视频进行独立标注,智能算法提取人体骨骼点用于后续分析和模型开发。专业组和业余组两组率的比较采用卡方检验进行统计分析。结果研究分析发现,腕部用力、手指未翘起、重心偏移、肘部弯曲是其中发生率最高的错误。通过专业组规范数据集共28800组人体骨骼点坐标数据计算手臂角度合理范围为左臂169.24°~180.00°,右臂角度为168.49°~180°。相同的方法,得到重心角度合理范围为0.00°~18.46°。在此基础上,构建的基于双ZED的CPR按压姿势检测模型可以较准确的识别出CPR的按压姿势错误(准确率91.31%,敏感度80.16%,特异度93.53%)。结论本研究创新性的提出对CPR按压姿势进行客观评价的方法,并且在此基础上构建了基于双ZED摄像头的CPR按压姿势检测模型,可以较准确的识别出CPR的按压姿势错误,以实现CPR培训质量控制可以更加的自动化和标准化。 展开更多
关键词 心肺复苏 胸外按压 检测模型 人工智能 ZED摄像头
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部