在嵌入式设备上,由于算力及存储空间的限制,当前的大型高精度目标检测模型的推理速度较低。为此,本文设计了一种轻量化目标检测模型,用于口罩人脸检测。首先,本文设计了一种高激活性鬼影(High Active Ghost,HAG)模块,以轻量的计算代价...在嵌入式设备上,由于算力及存储空间的限制,当前的大型高精度目标检测模型的推理速度较低。为此,本文设计了一种轻量化目标检测模型,用于口罩人脸检测。首先,本文设计了一种高激活性鬼影(High Active Ghost,HAG)模块,以轻量的计算代价减少特征图中的冗余。其次,利用HAG实现高激活性鬼影跨段部分(High Active Ghost Cross Stage Partial,HAG-CSP)连接模块,提升了跨段部分连接网络结构的特征学习能力。再次,利用HAG-CSP对你只需看一次(You Only Look Once,YOLO)模型进行轻量化改造来得到完整的Ghost-YOLO网络,并构造出一个口罩人脸检测器。实验结果表明,本文提出方法在NVIDIA Jetson NX嵌入式设备上,在检测精度优于其他目标检测算法的前提下,对于640×640的图片,实现了24.72 ms每帧的检测速度,并且减少了模型的参数量。展开更多
文摘在嵌入式设备上,由于算力及存储空间的限制,当前的大型高精度目标检测模型的推理速度较低。为此,本文设计了一种轻量化目标检测模型,用于口罩人脸检测。首先,本文设计了一种高激活性鬼影(High Active Ghost,HAG)模块,以轻量的计算代价减少特征图中的冗余。其次,利用HAG实现高激活性鬼影跨段部分(High Active Ghost Cross Stage Partial,HAG-CSP)连接模块,提升了跨段部分连接网络结构的特征学习能力。再次,利用HAG-CSP对你只需看一次(You Only Look Once,YOLO)模型进行轻量化改造来得到完整的Ghost-YOLO网络,并构造出一个口罩人脸检测器。实验结果表明,本文提出方法在NVIDIA Jetson NX嵌入式设备上,在检测精度优于其他目标检测算法的前提下,对于640×640的图片,实现了24.72 ms每帧的检测速度,并且减少了模型的参数量。
文摘针对安全帽检测算法的快速且精准需求,提出了一种实时安全帽检测算法。首先,针对基于边界框回归损失函数容易出现梯度消失(Gradient Vanish)的问题,本文提出外接圆半径差(Circumcircle Radius Difference,CRD)损失函数;然后,针对复杂多尺度特征融合层制约检测速度的问题,提出了一种轻量化的小目标聚焦型(Focus on Small Object,FSO)特征融合层;最后本文结合YOLO网络、CRD和FSO形成YOLO-CRD-FSO(YCF)检测模型,实现实时安全帽检测。实验结果表明,在Jetson Xavier NX设备上检测分辨率为640×640的视频,YCF的检测速度达到43.4帧/秒,比当前最新锐的YOLO-V5模型的速度快了近2帧/秒,且均值平均精度提升了近1%。说明YCF检测模型综合优化了边界框回归损失函数和特征融合层,获得了良好的安全帽检测效果。