期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于电学参数的苹果可溶性固形物含量预测
被引量:
2
1
作者
黄铝文
田旭
+1 位作者
任烈弘
张梦伊
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第2期252-259,共8页
为实现苹果可溶性固形物含量的无损检测,该研究提出了一种长短期记忆编解码和多层感知机(LSTMED-MLP,long short-term memory encoder-decoder-multi-layer perceptron)融合的介电特征预测方法。在0.158~3980 kHz频率范围内的9个频率点...
为实现苹果可溶性固形物含量的无损检测,该研究提出了一种长短期记忆编解码和多层感知机(LSTMED-MLP,long short-term memory encoder-decoder-multi-layer perceptron)融合的介电特征预测方法。在0.158~3980 kHz频率范围内的9个频率点下,采用介电谱测量仪获取300个富士苹果的电学参数,其中每个频率点对应15项电学参数,即每个苹果对应135项电学特性参数,之后通过苹果基因组学理化分析方法,获取可溶性固形物含量;根据电学参数与可溶性固形物含量,构建苹果关键基因组学参数的回归预测模型。为简化模型输入,提取样本变量特征,使用主成分分析(principal component analysis,PCA)和LSTMED模型,提取每个样本的40项特征值,作为非线性回归模型多层感知机(MLP)和XGBoost的输入,建立可溶性固形物含量预测模型。试验结果表明,LSTMED具有更好的适用性,且LSTMED-MLP模型的预测效果最好,在校正集和预测集上,决定系数分别为0.95和0.90,均方根误差分别为0.77和0.84,且对不同种植模式下苹果样本的变化差异具有更强鲁棒性,LSTMED-XGBoost模型次之。因此,LSTMED可以作为一种有效的非线性特征降维提取方法,应用于农产品品质参数分级和无损检测方面。
展开更多
关键词
农产品
介电光谱
电学参数
可溶性固形物
LSTMED
非线性特征
下载PDF
职称材料
题名
基于电学参数的苹果可溶性固形物含量预测
被引量:
2
1
作者
黄铝文
田旭
任烈弘
张梦伊
机构
西北农林科技大学信息工程学院
农业
农村部
农业
物
联网
国家
重点
试验室
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第2期252-259,共8页
基金
国家重点研发计划课题“农业先进适用技术社会化服务平台研发与示范(2020YFD1100601)”。
文摘
为实现苹果可溶性固形物含量的无损检测,该研究提出了一种长短期记忆编解码和多层感知机(LSTMED-MLP,long short-term memory encoder-decoder-multi-layer perceptron)融合的介电特征预测方法。在0.158~3980 kHz频率范围内的9个频率点下,采用介电谱测量仪获取300个富士苹果的电学参数,其中每个频率点对应15项电学参数,即每个苹果对应135项电学特性参数,之后通过苹果基因组学理化分析方法,获取可溶性固形物含量;根据电学参数与可溶性固形物含量,构建苹果关键基因组学参数的回归预测模型。为简化模型输入,提取样本变量特征,使用主成分分析(principal component analysis,PCA)和LSTMED模型,提取每个样本的40项特征值,作为非线性回归模型多层感知机(MLP)和XGBoost的输入,建立可溶性固形物含量预测模型。试验结果表明,LSTMED具有更好的适用性,且LSTMED-MLP模型的预测效果最好,在校正集和预测集上,决定系数分别为0.95和0.90,均方根误差分别为0.77和0.84,且对不同种植模式下苹果样本的变化差异具有更强鲁棒性,LSTMED-XGBoost模型次之。因此,LSTMED可以作为一种有效的非线性特征降维提取方法,应用于农产品品质参数分级和无损检测方面。
关键词
农产品
介电光谱
电学参数
可溶性固形物
LSTMED
非线性特征
Keywords
agricultural products
dielectric spectrum
electrical parameters
soluble solids content
LSTMED
non-linear feature
分类号
S126 [农业科学—农业基础科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于电学参数的苹果可溶性固形物含量预测
黄铝文
田旭
任烈弘
张梦伊
《农业工程学报》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部