针对目前驾驶员路径选择估计精度不高的问题,考虑地区、城镇类型、性别、年龄、是否已婚、学历、职业、是否从事全职工作、收入水平、交通拥挤程度、排队长度、延误时间、道路熟悉程度、路径长度、替代路径节省时间等多方面因素,设计了...针对目前驾驶员路径选择估计精度不高的问题,考虑地区、城镇类型、性别、年龄、是否已婚、学历、职业、是否从事全职工作、收入水平、交通拥挤程度、排队长度、延误时间、道路熟悉程度、路径长度、替代路径节省时间等多方面因素,设计了一个驾驶员路径选择行为调查方案,并对驾驶员群体开展了网上调查.利用Logit模型及Probit模型分析了驾驶员路径选择行为的影响因素,得到性别、年龄、是否从事全职工作、延误时间、道路熟悉程度、路径长度、道路拥挤程度等因素的影响显著.利用改进的分类树(classification and regression tree,CART)模型设计了驾驶员路径选择行为估计模型,重点针对驾驶员路径选择行为的特点对传统CART模型的递归划分与剪枝2个主要算法进行了改进研究.样本测试结果表明:模型的估计精度可达82%,相比现有模型的估计精度至少提高了6%.研究成果可为交通诱导方案的制定提供有效的技术支持.展开更多
文摘针对目前驾驶员路径选择估计精度不高的问题,考虑地区、城镇类型、性别、年龄、是否已婚、学历、职业、是否从事全职工作、收入水平、交通拥挤程度、排队长度、延误时间、道路熟悉程度、路径长度、替代路径节省时间等多方面因素,设计了一个驾驶员路径选择行为调查方案,并对驾驶员群体开展了网上调查.利用Logit模型及Probit模型分析了驾驶员路径选择行为的影响因素,得到性别、年龄、是否从事全职工作、延误时间、道路熟悉程度、路径长度、道路拥挤程度等因素的影响显著.利用改进的分类树(classification and regression tree,CART)模型设计了驾驶员路径选择行为估计模型,重点针对驾驶员路径选择行为的特点对传统CART模型的递归划分与剪枝2个主要算法进行了改进研究.样本测试结果表明:模型的估计精度可达82%,相比现有模型的估计精度至少提高了6%.研究成果可为交通诱导方案的制定提供有效的技术支持.