拉曼光谱是一种无损快速检测技术,可以提供材料的定性和定量信息,因而在医药、化工等诸多领域得到了广泛的应用。但是,由于样品荧光背景噪声的影响,造成拉曼光谱信号出现基线漂移现象,这给拉曼光谱的特征峰识别和拉曼成像带来十分严重...拉曼光谱是一种无损快速检测技术,可以提供材料的定性和定量信息,因而在医药、化工等诸多领域得到了广泛的应用。但是,由于样品荧光背景噪声的影响,造成拉曼光谱信号出现基线漂移现象,这给拉曼光谱的特征峰识别和拉曼成像带来十分严重的影响。目前,改进实验方法和数值处理是解决该问题的两种重要手段。改进实验方法上,有偏振调制法和高频调制法等,但存在实验设备复杂,检测技术难度大等缺点;数值处理上,有多项式拟合和小波变换等,但容易出现欠拟合和过拟合等现象。本文在不改换高精密设备的前提下,针对传统基线校正的方法进行了改进,提出一种基于自适应加窗spline曲线拟合的拉曼光谱去基线方法。首先,基于谱峰识别算法和初始搜索步长求得谷值的最优搜索间距,并利用谱谷识别算法完成谷值曲线的拟合;其次,利用最优搜索间距和谱峰识别算法,求得谷值曲线峰值位置,并在该位置处对称添加自适应矩形窗函数去除峰值,重新划分整个区间,拟合谷值曲线;再次,逐点比较拟合曲线与原拉曼光谱信号,取较小值,拟合曲线;最后,重复加窗去除峰值操作,直至自适应窗函数宽度低于阈值,完成拉曼光谱信号的基线拟合。在实验中,选用乙酸丁酯、聚甲基丙烯酸甲酯(polymethyl met hacrylate,PMMA)作为实验样品,利用该方法对其拉曼光谱信号进行了基线校正,观察并比较该方法和传统方法的校正结果。实验结果表明,该方法能够有效地消除拉曼光谱信号的基线漂移,较好的保留一些较弱的拉曼特征峰,且不易出现欠拟合和过拟合的现象,获得了良好的基线校正效果,为进一步分析光谱数据和实现拉曼成像提供准确可靠的信息。展开更多
铅酸蓄电池荷电状态(state of charge)是电源管理系统中的重要参数,准确估算蓄电池荷电状态具有重要意义。现有铅酸蓄电池荷电状态估算方法存在不适用于实际行车环境、易受干扰、计算精度低等缺陷。在开路电压法与安时积分法结合的基础...铅酸蓄电池荷电状态(state of charge)是电源管理系统中的重要参数,准确估算蓄电池荷电状态具有重要意义。现有铅酸蓄电池荷电状态估算方法存在不适用于实际行车环境、易受干扰、计算精度低等缺陷。在开路电压法与安时积分法结合的基础上提出一种改进SOC估算方法,研究结合多个参数并引入权值w的SOC初始化算法,在SOC估算过程中根据实时温度校正电池容量,可以提高计算精度,符合工况。实验结果表明:此SOC估算方法具有很好的鲁棒性,最大估算误差小于3%。展开更多
文摘拉曼光谱是一种无损快速检测技术,可以提供材料的定性和定量信息,因而在医药、化工等诸多领域得到了广泛的应用。但是,由于样品荧光背景噪声的影响,造成拉曼光谱信号出现基线漂移现象,这给拉曼光谱的特征峰识别和拉曼成像带来十分严重的影响。目前,改进实验方法和数值处理是解决该问题的两种重要手段。改进实验方法上,有偏振调制法和高频调制法等,但存在实验设备复杂,检测技术难度大等缺点;数值处理上,有多项式拟合和小波变换等,但容易出现欠拟合和过拟合等现象。本文在不改换高精密设备的前提下,针对传统基线校正的方法进行了改进,提出一种基于自适应加窗spline曲线拟合的拉曼光谱去基线方法。首先,基于谱峰识别算法和初始搜索步长求得谷值的最优搜索间距,并利用谱谷识别算法完成谷值曲线的拟合;其次,利用最优搜索间距和谱峰识别算法,求得谷值曲线峰值位置,并在该位置处对称添加自适应矩形窗函数去除峰值,重新划分整个区间,拟合谷值曲线;再次,逐点比较拟合曲线与原拉曼光谱信号,取较小值,拟合曲线;最后,重复加窗去除峰值操作,直至自适应窗函数宽度低于阈值,完成拉曼光谱信号的基线拟合。在实验中,选用乙酸丁酯、聚甲基丙烯酸甲酯(polymethyl met hacrylate,PMMA)作为实验样品,利用该方法对其拉曼光谱信号进行了基线校正,观察并比较该方法和传统方法的校正结果。实验结果表明,该方法能够有效地消除拉曼光谱信号的基线漂移,较好的保留一些较弱的拉曼特征峰,且不易出现欠拟合和过拟合的现象,获得了良好的基线校正效果,为进一步分析光谱数据和实现拉曼成像提供准确可靠的信息。
文摘铅酸蓄电池荷电状态(state of charge)是电源管理系统中的重要参数,准确估算蓄电池荷电状态具有重要意义。现有铅酸蓄电池荷电状态估算方法存在不适用于实际行车环境、易受干扰、计算精度低等缺陷。在开路电压法与安时积分法结合的基础上提出一种改进SOC估算方法,研究结合多个参数并引入权值w的SOC初始化算法,在SOC估算过程中根据实时温度校正电池容量,可以提高计算精度,符合工况。实验结果表明:此SOC估算方法具有很好的鲁棒性,最大估算误差小于3%。